Navigation Links
Could mutant flies give epilepsy sufferers greater peace of mind?
Date:3/21/2011

EUREKA "Exceptional, Unconventional Research Enabling Knowledge Acceleration" is the name of a rare and competitive grant that Reenan recently won from the National Institutes of Health. Beginning April 1, Reenan will use the four-year, $1.3-million award to look for genes that can suppress seizures in fruit flies that he has cleverly engineered to mimic human epilepsy.

The epiphany, which came a few years ago, was about the surprising genetic similarity between fruit flies and people. For years Reenan has conducted basic gene expression research on a particular fruit fly gene nicknamed "para" that governs how sodium ions can trigger brain cells to electrically signal muscles to move. Ominously, the gene's name is short for paralytic.

"I'd known for years that there are sodium channel-related genes in humans," he said. "One day, I thought, 'I should check out what's the closest human homolog of the para gene.' So I did that."

He found a very close match between para and the human gene SCN1A. Subsequently he found that mutations on that gene underlie forms of epilepsy including the childhood forms generalized epilepsy with febrile (fever-triggered) seizures and severe myclonic epilepsy of infancy.

Reenan realized that if he could precisely and reliably create the epilepsy mutations found in the human SCN1A gene in the fruit fly para gene, he'd have a mass producible platform for genetic research into the disease. Fruit flies can be bred, engineered and observed by the thousands, and his flies would be genetically meaningful stand-ins for people.

Now that he's succeeded in making flies that mimic human epilepsy, his goal is to breed and observe the mutant flies in ways that intentionally mutate them further. Maybe one of those mutations will suppress the disease.

A unique technique

The trick, one that the NIH reviewers found to be "exceptional and unconventional" enough to support with the EUREKA grant, was making the epileptic flies in the first place. Reenan uses a technique called "homologous recombination." It's an established practice, but one that most other biologists find tricky and cumbersome. Reenan, however, has it down to a science.

When biologists have a mutation to insert, they often use a "transgenic" technique that employs a bacterium or a virus to stuff a copy of a gene, or maybe a few, into a random location on a random chromosome in a embryonic cell. It can produce interesting results once the engineered organism develops, Reenan said, but it's an inexact way to instill a genetically inherited disease.

Because the transgenic method is a way to break genetic material into an embryonic cell, Reenan uses it as the first step in a more sophisticated genetic rearrangement. For the job, Reenan's mutant snippets of DNA carry a few special tools. One is a gene on each end that allows the snippets to break free from wherever they first land and to float around the cell. Another is the gene to give the flies red eyes.

The mutant snippet very closely resembles the unmutated para gene, so when it is floating freely, it will be picked up by the cell's natural DNA repair machinery and plopped into exactly the right place on the right chromosome. In this way the fly embryos are more likely to grow up to have engineered epilepsy.

In almost every fly where the rearrangement works, the fly's eyes turn out a tell-tale red instead of their usual white. To find the flies with the epilepsy mutation, undergraduates in Reenan's lab merely need to look for the flies with the red eyes.

Cast of thousands

As Reenan and his group create and breed more and more epileptic flies, they can build a large enough population to induce mutations with chemical mutagens or radiation. Somewhere in all that genetic code that thousands of flies carry around, he's betting, some switch will flip and a mutation will turn out to interfere with epilepsy and suppress seizures in flies that were created to have them. In essence, the flies will then contain what he calls "a genetic cure."

This is clearly a methodology that cannot be employed with people, but given the genetic overlap between para and SCN1A, if there's a genetic means to combat epilepsy in people, Reenan's flies might reveal it.

"With epilepsy, the treatments are generally fairly broad and with a lot of side effects and we don't really understand epileptigenesis why do seizures happen, how are we going to treat them," Reenan said. "So the idea is pretty simple. Let's just use standard fruit fly suppressor genetics and find mutations that suppress or cure the seizures."


'/>"/>

Contact: David Orenstein
david_orenstein@brown.edu
401-863-1862
Brown University
Source:Eurekalert

Related biology news :

1. Vitiligo skin disorder could yield clues in fight against melanoma
2. Saliva proteins could help detection of oral cancer
3. Research about plant viruses could lead to new ways to improve crop yields
4. Nanodiamond drug device could transform cancer treatment
5. UNC study on properties of carbon nanotubes, water could have wide-ranging implications
6. So-called sandfish could help materials handling and process technology specialists
7. Discovery of natural compounds that could slow blood vessel growth
8. Researchers design artificial cells that could power medical implants
9. Herbicide-resistant grape could revitalize Midwest wine industry
10. Sensitive laser instrument could aid search for life on Mars
11. Could Dr. House be replaced by a computer?
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/14/2016)... , Nov. 14, 2016  Based on ... market, Frost & Sullivan recognizes FST Biometrics ... Award for Visionary Innovation Leadership. FST Biometrics ... biometric identification market by pioneering In Motion ... for instant, seamless, and non-invasive verification. This ...
(Date:6/22/2016)... 22, 2016   Acuant , the ... solutions, has partnered with RightCrowd ® ... Visitor Management, Self-Service Kiosks and Continuous Workforce ... add functional enhancements to existing physical access ... venues with an automated ID verification and ...
(Date:6/20/2016)... June 20, 2016 Securus Technologies, a ... solutions for public safety, investigation, corrections and monitoring ... involved, it has secured the final acceptance by ... for Managed Access Systems (MAS) installed. Furthermore, Securus ... to be installed by October, 2016. MAS distinguishes ...
Breaking Biology News(10 mins):
(Date:12/4/2016)... Francisco, CA (PRWEB) , ... December 03, 2016 ... ... grants to ground-breaking microbiome studies. A microbiome impact grant award has been made ... the effect of heavy smoking and drinking on the oral microbiome. Grant proposals ...
(Date:12/2/2016)... NORWALK, Conn. , Dec. 2, 2016  The ... research presentations from the MMRF CoMMpass Study SM —the ... and accelerating precision medicine in multiple myeloma—will be presented ... (ASH) Annual Meeting & Exposition in San ... are helping to optimize treatment strategies, as well as ...
(Date:12/2/2016)... ... December 01, 2016 , ... ... findings demonstrating the value of DNA microarray comparative genomic hybridization (array CGH) ... Antonio Breast Cancer Symposium. Using molecular test results from tumors with previously ...
(Date:12/2/2016)... ... December 01, 2016 , ... Orthogonal, a Chicago-based medical device ... Class II 510(k) clearance for their flagship medical device, SimplECG. , With this ... devices that rely on cloth-based nanosensors. While other companies have attempted to focus ...
Breaking Biology Technology: