Navigation Links
Could Dr. House be replaced by a computer?
Date:10/16/2008

Scientists know that different normal and diseased tissues behave differently. But a method that tells them just how they do so may one day give medical science a new way to fight obesity, hypertension, diabetes and other dangerous disorders of the metabolism.

Until now, scientists had to rely on basic observations at the cellular level, since they lacked information about the metabolic processes of individual organs, such as the liver, heart and brain.

But a new computational approach developed by computer scientists Tomer Shlomi, Moran Cabili and Prof. Eytan Ruppin from the Blavatnik School of Computer Science at Tel Aviv University may help science gain a clearer overall picture of the metabolic processes in our different tissues. Their model could be potentially used in the future to refine the diagnosis of various metabolic-related disorders, aid in treatment and develop new drugs. The results of their research were recently reported in the prestigious journal Nature Biotechnology.

Between Healthy and Diseased Tissues Lies the Answer

The model integrates tissue-specific information from healthy or diseased organs and matches it to an existing model of the global human metabolic network to predict metabolic tissue behavior. Their results, shared with Markus Herrgard and Bernhard Palsson from the University at San Diego, "establish a computational basis for the genome-wide study of normal and abnormal human metabolism in a tissue-specific manner," says Prof. Ruppin.

The computational model describes metabolism in ten different human tissues, exposing the functions in the body responsible for metabolism a set of chemical reactions occurring in living organisms that allows tissues to grow, maintain their structures, and function and respond to other bodily cues. And while the research published focuses on ten specific tissues, the tool can be expanded and applied to other tissues, then potentially to entire organs.

"The previous model of human metabolism was a generic one, which did not describe how the metabolism of different tissues work," says Shlomi. "Now we can provide large scale descriptions as to how tissues metabolize different compounds and how metabolism actually works in individual organs like the heart, liver, brain or pancreas."

Towards Computerized Disease Diagnosis

Building on these results, the Tel Aviv University team are now working on developing tools for the discovery of biomarkers (metabolites that can be measured in the blood and urine) that are associated with different diseases. The team is developing computational methods for identifying novel metabolic biomarkers that may be used for diagnosing an array of genetic metabolic disorders (including such disorders with relatively higher incidence in Jewish populations such as G6PD and Tay-Sachs).

More generally, this basic research provides scientists with important knowledge of the metabolism of different body tissues and organs. The consequences of this endeavour and its basic motivation is to help drug developers as they explore new drug targets. The current research is at the basic science level, but such research may lead to unforeseen applications.

Today's cancer-fighting drugs, for example, kill both cancerous and healthy cells. When more becomes known about the metabolism of cancer in different tissues via a combination of experimental and computational studies of the kind described in the research, then hopefully more effective and targeted drugs could be built, says Prof. Ruppin.


'/>"/>

Contact: George Hunka
ghunka@aftau.org
212-742-9070
American Friends of Tel Aviv University
Source:Eurekalert  

Related biology news :

1. Sensitive laser instrument could aid search for life on Mars
2. Herbicide-resistant grape could revitalize Midwest wine industry
3. Researchers design artificial cells that could power medical implants
4. Discovery of natural compounds that could slow blood vessel growth
5. So-called sandfish could help materials handling and process technology specialists
6. UNC study on properties of carbon nanotubes, water could have wide-ranging implications
7. Nanodiamond drug device could transform cancer treatment
8. Research about plant viruses could lead to new ways to improve crop yields
9. Saliva proteins could help detection of oral cancer
10. Vitiligo skin disorder could yield clues in fight against melanoma
11. Longevity, cancer and diet connected: New research in worms could apply to humans
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Could Dr. House be replaced by a computer?
(Date:6/23/2017)... ARMONK, N.Y. and ITHACA, N.Y. ... IBM ) and Cornell University, a leader in dairy ... combined with bioinformatics designed to help reduce the chances ... breaches. With the onset of this dairy project, Cornell ... the Consortium for Sequencing the Food Supply Chain, a ...
(Date:5/16/2017)... May 16, 2017  Veratad Technologies, LLC ( www.veratad.com ... age and identity verification solutions, announced today they will ... 2017, May 15 thru May 17, 2017, in ... International Trade Center. Identity impacts the ... in today,s quickly evolving digital world, defining identity is ...
(Date:4/24/2017)... , April 24, 2017 Janice ... partner with  Identity Strategy Partners, LLP (IdSP) , ... or without President Trump,s March 6, 2017 ... Entry , refugee vetting can be instilled with greater ... (Right now, all refugee applications are suspended by ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... BioMedGPS announces expanded coverage of ... newest module, US Hemostats & Sealants. , SmartTRAK’s US Market for Hemostats and ... synthetic sealants and biologic sealants used in surgical applications. BioMedGPS estimates the market ...
(Date:10/11/2017)... CA (PRWEB) , ... October 11, 2017 , ... ... upregulate any gene in its endogenous context, enabling overexpression experiments and avoiding the ... system with small RNA guides is transformative for performing systematic gain-of-function studies. ...
(Date:10/11/2017)... -- VMS BioMarketing, a leading provider of patient support solutions, has ... (CNE) network, which will launch this week. The VMS CNEs ... professionals to enhance the patient care experience by delivering peer-to-peer ... care professionals to help women who have been diagnosed and ... ...
(Date:10/11/2017)... ... October 11, 2017 , ... Singh ... orphan drug designation to SBT-100, its novel anti-STAT3 (Signal Transducer and Activator of ... SBT-100 is able to cross the cell membrane and bind intracellular STAT3 and ...
Breaking Biology Technology: