Navigation Links
Cornell engineers solve a biological mystery and boost artificial intelligence
Date:1/29/2013

ITHACA, N.Y. By simulating 25,000 generations of evolution within computers, Cornell University engineering and robotics researchers have discovered why biological networks tend to be organized as modules a finding that will lead to a deeper understanding of the evolution of complexity. (Proceedings of the Royal Society, Jan. 30, 2013.)

The new insight also will help evolve artificial intelligence, so robot brains can acquire the grace and cunning of animals.

From brains to gene regulatory networks, many biological entities are organized into modules dense clusters of interconnected parts within a complex network. For decades biologists have wanted to know why humans, bacteria and other organisms evolved in a modular fashion. Like engineers, nature builds things modularly by building and combining distinct parts, but that does not explain how such modularity evolved in the first place. Renowned biologists Richard Dawkins, Gnter P. Wagner, and the late Stephen Jay Gould identified the question of modularity as central to the debate over "the evolution of complexity."

For years, the prevailing assumption was simply that modules evolved because entities that were modular could respond to change more quickly, and therefore had an adaptive advantage over their non-modular competitors. But that may not be enough to explain the origin of the phenomena.

The team discovered that evolution produces modules not because they produce more adaptable designs, but because modular designs have fewer and shorter network connections, which are costly to build and maintain. As it turned out, it was enough to include a "cost of wiring" to make evolution favor modular architectures.

This theory is detailed in "The Evolutionary Origins of Modularity," published today in the Proceedings of the Royal Society by Hod Lipson, Cornell associate professor of mechanical and aerospace engineering; Jean-Baptiste Mouret, a robotics and computer science professor at Universit Pierre et Marie Curie in Paris; and by Jeff Clune, a former visiting scientist at Cornell and currently an assistant professor of computer science at the University of Wyoming.

To test the theory, the researchers simulated the evolution of networks with and without a cost for network connections.

"Once you add a cost for network connections, modules immediately appear. Without a cost, modules never form. The effect is quite dramatic," says Clune.

The results may help explain the near-universal presence of modularity in biological networks as diverse as neural networks such as animal brains and vascular networks, gene regulatory networks, protein-protein interaction networks, metabolic networks and even human-constructed networks such as the Internet.

"Being able to evolve modularity will let us create more complex, sophisticated computational brains," says Clune.

Says Lipson: "We've had various attempts to try to crack the modularity question in lots of different ways. This one by far is the simplest and most elegant."


'/>"/>

Contact: Blaine Friedlander
bpf2@cornell.edu
607-254-8093
Cornell University
Source:Eurekalert

Related biology news :

1. Iowa State computer, electrical engineers working to help biologists cope with big data
2. Maintaining Earths sustainability: Scientists, engineers, educators take coordinated approach
3. Nanoengineers can print 3D microstructures in mere seconds
4. WHOI scientists/engineers partner with companies to market revolutionary new instruments
5. Medusa reimagined: Caltech-led team reverse engineers a jellyfish with the ability to swim
6. BYU engineers conceive disc replacement to treat chronic low back pain
7. Civil engineers find savings where the rubber meets the road
8. Engineers use droplet microfluidics to create glucose-sensing microbeads
9. When cells hit the wall: UCLA engineers put the squeeze on cells to diagnose disease
10. Chemical engineers at UMass Amherst find high-yield method of making xylene from biomass
11. Queens is UK leader for female scientists and engineers
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/19/2017)... , April 19, 2017 The ... vendor landscape is marked by the presence of several ... however held by five major players - 3M Cogent, ... companies accounted for nearly 61% of the global military ... companies in the global military biometrics market boast global ...
(Date:4/11/2017)... GARDENS, Fla. , April 11, 2017 /PRNewswire/ ... management and secure authentication solutions, today announced that ... by Intelligence Advanced Research Projects Activity (IARPA) to ... IARPA,s Thor program. "Innovation has been ... and IARPA,s Thor program will allow us to ...
(Date:4/5/2017)... SEATTLE , April 5, 2017  The Allen ... the Allen Cell Explorer: a one-of-a-kind portal and dynamic ... large-scale 3D imaging data, the first application of deep ... edited human stem cell lines and a growing suite ... the platform for these and future publicly available resources ...
Breaking Biology News(10 mins):
(Date:5/23/2017)... ... May 23, 2017 , ... Energetiq Technology, a world leader ... expansion to accommodate its rapid growth. , The renovations at the company’s headquarters ... the existing areas. The expansion includes, a state-of-the-art engineering facility, and a second ...
(Date:5/23/2017)... Boston, Massachusetts (PRWEB) , ... May 23, 2017 , ... ... is making a splash at this year’s Bio-IT World Conference and Expo ... Anzo Smart Data Lake® 4.0 solution. The Anzo Smart Data Lake is also ...
(Date:5/22/2017)... Maryland (PRWEB) , ... May 22, 2017 , ... ... Olsen, joined with other leaders of the Maryland Biohealth community in developing and ... globally recognized Top 3 U.S. BioHealth Innovation Hub by 2023. ...
(Date:5/21/2017)... (PRWEB) , ... May 20, 2017 , ... ... that helps avoid the lengthy trial and error process by finding the right ... It can also strengthen the doctor-patient relationship through a personalized approach to treatment. ...
Breaking Biology Technology: