Navigation Links
Controlling movements with light
Date:7/20/2011

Unlike conventional methods, with the so-called optogenetics, the researchers are able to target one cell type. "We are now going to use this method to find out exactly what goes wrong in the nerve cells in movement disorders such as ataxias", said Prof. Dr. Stefan Herlitze (RUB Department for Biology and Biotechnology). The researchers report in the Journal of Biological Chemistry. The Bochum team examined a specific signalling pathway that is controlled by a so-called G-protein-coupled receptor. This pathway is important for the modulation of activity in complex neuronal networks. Disturbances of the function can, for example, have an effect on emotional and motor behaviours. "We know that the activity pattern of the Purkinje cells in the cerebellum is crucial for the coordination of movements", Herlitze explained. "It is unclear, however, what contribution is made by the individual receptors." In conventional studies, researchers use drugs that inhibit or stimulate specific proteins in nerve cells to investigate the contribution of these proteins to the activity of the cells. However, Herlitze's team was interested in a protein (G-protein-coupled receptor) which occurs in various cell types. Had the researchers administered a drug, they would not only have deactivated the receptor in the Purkinje cells, but in all cell types in which it occurs. The drug method therefore makes it impossible to observe the contribution of the receptor in the Purkinje cells in isolation.

Optogenetics: replacing drugs with light

To avoid this problem, Herlitze's team replaced the drugs with proteins that are activated by light. Using genetic methods, the researchers integrated rhodopsin, the light-sensitive protein of the eye, into the Purkinje cells of mice. They also implanted a laser probe in the cerebellum, with which they illuminated the rhodopsin. The light-activated rhodopsin then activated the G-protein-coupled receptor in the Purkinje cells, while the same receptors in other cell types remained inactive. The RUB Department of General Zoology and Neurobiology has been instrumental in establishing this method worldwide.

Investigated receptor is crucial for movement control

The researchers found that activation of the G-protein-coupled receptor changed the activity pattern of the Purkinje cells. Herlitze's team had to expose the rhodopsin to light for several seconds to achieve these effects. A twenty to thirty percent reduction in cell activity was sufficient to induce visible motor deficits in the behaviour of the mice, such as impaired balance or coordination problems. "We were able to demonstrate for the first time that the modulation of a specific G-protein-coupled receptor in the Purkinje cells is of crucial importance for the control and coordination of movement", summed up Herlitze.


'/>"/>

Contact: Stefan Herlitze
stefan.herlitze@rub.de
49-234-322-4363
Ruhr-University Bochum
Source:Eurekalert

Related biology news :

1. Starch-controlling gene fuels more protein in soybean plants
2. Toward controlling fungus that caused Irish potato famine
3. Scripps Research scientist uncovers switch controlling protein production
4. Scientists discover new mechanism for controlling blood sugar level
5. Artificially controlling water condensation leads to room-temperature ice
6. Balanced ecosystems seen in organic ag better at controlling pests
7. Production of biofuels could benefit by controlling the types of cells that develop in plants
8. More than 1: Long-reigning microbe controlling ocean nitrogen shares the throne
9. UNC study pinpoints gene controlling number of brain cells
10. Key protein regulating inflammation may prove relevant to controlling sepsis
11. Photoselective film proves effective for controlling height in potted gardenia plants
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/20/2016)... , May 20, 2016  VoiceIt is excited ... with VoicePass. By working together, VoiceIt ...  Because VoiceIt and VoicePass take slightly different approaches ... increases both security and usability. ... about this new partnership. "This marketing ...
(Date:5/12/2016)... 2016 WearablesResearch.com , a brand of ... results from the Q1 wave of its quarterly wearables ... consumers, receptivity to a program where they would receive ... insurance company. "We were surprised to see ... Michael LaColla , CEO of Troubadour Research, "primarily because ...
(Date:5/3/2016)... 3, 2016  Neurotechnology, a provider of high-precision ... Automated Biometric Identification System (ABIS) , a complete ... MegaMatcher ABIS can process multiple complex biometric transactions ... of fingerprint, face or iris biometrics. It leverages ... and MegaMatcher Accelerator , which have been ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... June 27, 2016   Ginkgo Bioworks , a ... engineering, was today awarded as one of the ... the world,s most innovative companies. Ginkgo Bioworks is ... the real world in the nutrition, health and ... directly with customers including Fortune 500 companies to ...
(Date:6/24/2016)... Epic Sciences unveiled a liquid biopsy ... PARP inhibitors by targeting homologous recombination deficiency (HRD) ... test has already been incorporated into numerous clinical ... Over 230 clinical trials are investigating ... PARP, ATM, ATR, DNA-PK and WEE-1. Drugs targeting ...
(Date:6/24/2016)... ... , ... Researchers at the Universita Politecnica delle Marche in Ancona combed medical ... mesothelioma. Their findings are the subject of a new article on the Surviving Mesothelioma ... in the blood, lung fluid or tissue of mesothelioma patients that can help point ...
(Date:6/23/2016)... ... June 23, 2016 , ... UAS LifeSciences, one ... of their brand, UP4™ Probiotics, into Target stores nationwide. The company, which has ... add Target to its list of well-respected retailers. This list includes such fine ...
Breaking Biology Technology: