Navigation Links
Controlling movements with light

Unlike conventional methods, with the so-called optogenetics, the researchers are able to target one cell type. "We are now going to use this method to find out exactly what goes wrong in the nerve cells in movement disorders such as ataxias", said Prof. Dr. Stefan Herlitze (RUB Department for Biology and Biotechnology). The researchers report in the Journal of Biological Chemistry. The Bochum team examined a specific signalling pathway that is controlled by a so-called G-protein-coupled receptor. This pathway is important for the modulation of activity in complex neuronal networks. Disturbances of the function can, for example, have an effect on emotional and motor behaviours. "We know that the activity pattern of the Purkinje cells in the cerebellum is crucial for the coordination of movements", Herlitze explained. "It is unclear, however, what contribution is made by the individual receptors." In conventional studies, researchers use drugs that inhibit or stimulate specific proteins in nerve cells to investigate the contribution of these proteins to the activity of the cells. However, Herlitze's team was interested in a protein (G-protein-coupled receptor) which occurs in various cell types. Had the researchers administered a drug, they would not only have deactivated the receptor in the Purkinje cells, but in all cell types in which it occurs. The drug method therefore makes it impossible to observe the contribution of the receptor in the Purkinje cells in isolation.

Optogenetics: replacing drugs with light

To avoid this problem, Herlitze's team replaced the drugs with proteins that are activated by light. Using genetic methods, the researchers integrated rhodopsin, the light-sensitive protein of the eye, into the Purkinje cells of mice. They also implanted a laser probe in the cerebellum, with which they illuminated the rhodopsin. The light-activated rhodopsin then activated the G-protein-coupled receptor in the Purkinje cells, while the same receptors in other cell types remained inactive. The RUB Department of General Zoology and Neurobiology has been instrumental in establishing this method worldwide.

Investigated receptor is crucial for movement control

The researchers found that activation of the G-protein-coupled receptor changed the activity pattern of the Purkinje cells. Herlitze's team had to expose the rhodopsin to light for several seconds to achieve these effects. A twenty to thirty percent reduction in cell activity was sufficient to induce visible motor deficits in the behaviour of the mice, such as impaired balance or coordination problems. "We were able to demonstrate for the first time that the modulation of a specific G-protein-coupled receptor in the Purkinje cells is of crucial importance for the control and coordination of movement", summed up Herlitze.


Contact: Stefan Herlitze
Ruhr-University Bochum

Related biology news :

1. Starch-controlling gene fuels more protein in soybean plants
2. Toward controlling fungus that caused Irish potato famine
3. Scripps Research scientist uncovers switch controlling protein production
4. Scientists discover new mechanism for controlling blood sugar level
5. Artificially controlling water condensation leads to room-temperature ice
6. Balanced ecosystems seen in organic ag better at controlling pests
7. Production of biofuels could benefit by controlling the types of cells that develop in plants
8. More than 1: Long-reigning microbe controlling ocean nitrogen shares the throne
9. UNC study pinpoints gene controlling number of brain cells
10. Key protein regulating inflammation may prove relevant to controlling sepsis
11. Photoselective film proves effective for controlling height in potted gardenia plants
Post Your Comments:
(Date:11/17/2015)... 2015  Vigilant Solutions announces today that Mr. ... Directors. --> --> ... the partnership at TPG Capital, one of the largest ... Billion in revenue.  He founded and led TPG,s Operating ... companies, from 1997 to 2013.  In his first role, ...
(Date:11/16/2015)... , Nov 16, 2015  Synaptics Inc. (NASDAQ: ... interface solutions, today announced expansion of its TDDI ... touch controller and display driver integration (TDDI) ... smartphones. These new TDDI products add to the ... resolution), TD4302 (WQHD resolution), and TD4322 (FHD resolution) ...
(Date:11/12/2015)... Nov. 12, 2015  Arxspan has entered into ... and Harvard for use of its ArxLab cloud-based ... tools. The partnership will support the institute,s efforts ... chemical research information internally and with external collaborators. ... for managing the Institute,s electronic laboratory notebook, compound ...
Breaking Biology News(10 mins):
(Date:11/30/2015)... Nov. 30, 2015  Northwest Biotherapeutics (NASDAQ: NWBO ... personalized immune therapies for solid tumor cancers, announced today ... independent director, and the Company welcomes Neil Woodford,s ... a recent anonymous internet report on NW Bio.  The ... Linda Powers stated, "We agree with Mr. ...
(Date:11/27/2015)... ... November 27, 2015 , ... Pittcon is pleased to ... presentations offered in symposia, oral sessions, workshops, awards, and posters. The core ... of applications such as, but not limited to, biotechnology, biomedical, drug discovery, environmental, ...
(Date:11/25/2015)... 2015  PharmAthene, Inc. (NYSE MKT: PIP) announced  today ... rights plan (Rights Plan) in an effort to preserve ... under Section 382 of the Internal Revenue Code (Code). ... use of its NOLs could be substantially limited if ... Section 382 of the Code. In general, an ownership ...
(Date:11/25/2015)... QUEBEC CITY , Nov. 25, 2015 /PRNewswire/ ... "Company"), affirms that its business and prospects remain ... , Zoptrex™ (zoptarelin doxorubicin) recently received DSMB ... program to completion following review of the final ... met Phase 2 Primary Endpoint in men with ...
Breaking Biology Technology: