Navigation Links
Controlling embryonic fate by association
Date:5/4/2008

Association determines fate in embryonic stem cells, said Baylor College of Medicine researchers in a report that appears in the current issue of the journal Nature Cell Biology.

These findings provide models of how the embryonic stem cell is maintained in its flexible state, said Dr. Zhou Songyang, professor of biochemistry and molecular biology at BCM and senior author of the report. It provides another hint as to how gene transcription is controlled in embryonic stem cells.

One aim of embryonic stem cell research is to understand how the cells determine whether they will keep dividing and maintain a pool of embryonic cells, or start the process of cellular differentiation that results in different cell types.

Songyang and his colleagues found that two critical embryonic cell proteins Nanog and Oct4 associate with specific components that are parts of transcription repression complexes. These complexes affect the way that genes are expressed and carry out their tasks in the cell.

A special complex called NODE (Nanog and Oct4-associated Deacetylase) contains a critical component called Mta1 along with histone deacetylases. NODE associates with Nanog and Oct4 to control the fate of embryonic stem cells, said Songyang.

Histones are critical parts of genomic DNA structures or chromatins, acting as spools around which the genetic material winds in the nucleus. The DNA wraps more tightly when deacetylase removes the acetyl tails from the histones. The tight wrapping makes it hard for genes to be transcribed into the message that allows them to carry out their roles in the cell.

Think of it as the parts of a car, said Songyang. If you think of Nanog as the engine that drives it, you realize that the car still needs accessories like wheels, the tailpipe, etc. We are interested in the big machinery of which proteins (like Nanog) are the drivers. We want to understand the enzymatic activities of the complexes. Then we need to identify the individual parts and ask the big question: How do different parts work together and why do you need special parts"

We noticed that there are many histone deacetylases, he said. Nanog uses these proteins to control gene expression and maybe also the chromatin state. When there is deacetylation, the gene is in a passive state.

The embryonic stem cell is always at the stage of deciding whether to divide (and make more embryonic stem cells) or to differentiate, Songyang said. All the extrinsic and intrinsic signals make the life of the embryonic stem cell transient. In other words, it has to be ready to go down either road.

It becomes an interesting question, said Songyang. Such a demanding state of readiness may mean that the embryonic stem cell requires a different complex at the chromatin than the somatic (or differentiated cell).


'/>"/>

Contact: Graciela Gutierrez
ggutierr@bcm.edu
713-798-4710
Baylor College of Medicine
Source:Eurekalert

Related biology news :

1. Controlling a sea of information
2. Controlling schistosomiasis: buffalo or snails?
3. Bioclocks work by controlling chromosome coiling
4. Hot spots the key to controlling European carp in Australia
5. UT Southwestern researchers identify hundreds of genes controlling female fertility
6. Controlling for size may also prevent cancer
7. Protein protects embryonic stem cells versatility and self-renewal
8. Widespread support for nonembryonic stem cell research, VCU Life Sciences Survey shows
9. Implanting embryonic cardiac cells prevents arrhythmias
10. Human embryonic stem cell -- derived bone tissue closes massive skull injury
11. Oosight microscope enables embryonic stem cell breakthrough
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/5/2017)... 4, 2017 KEY FINDINGS The ... at a CAGR of 25.76% during the forecast period ... primary factor for the growth of the stem cell ... MARKET INSIGHTS The global stem cell market ... and geography. The stem cell market of the product ...
(Date:4/3/2017)... , April 3, 2017  Data captured ... engineering platform, detected a statistically significant association ... prior to treatment and objective response of ... potential to predict whether cancer patients will ... treatment, as well as to improve both pre-infusion ...
(Date:3/30/2017)... 30, 2017 The research team of The ... (3D) fingerprint identification by adopting ground breaking 3D fingerprint minutiae recovery ... of speed and accuracy for use in identification, crime investigation, immigration ... ... A research team ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... ... platform specifically designed for life science researchers to analyze and interpret datasets, ... Franklin, who made a major contribution to the discovery of the double-helix ...
(Date:10/11/2017)... BALTIMORE, Md. (PRWEB) , ... October 11, 2017 ... ... for digital pathology, announced today it will be hosting a Webinar titled, “Pathology ... of  Advanced Pathology Associates , on digital pathology adoption best practices and how ...
(Date:10/11/2017)... (PRWEB) , ... October 11, 2017 , ... ... Administration (FDA) has granted orphan drug designation to SBT-100, its novel anti-STAT3 (Signal ... the treatment of osteosarcoma. SBT-100 is able to cross the cell membrane and ...
(Date:10/10/2017)... , Oct. 10, 2017 International research firm Parks ... Strategy, will speak at the TMA 2017 Annual Meeting , October ... trends in the residential home security market and how smart safety and ... Parks ... "The residential ...
Breaking Biology Technology: