Navigation Links
Consortium to design human trials of mosaic HIV vaccine
Date:10/18/2010

Los Alamos National Laboratory researcher Bette Korber is part of an international team of investigators working to design and implement the first human trial of a mosaic HIV vaccine candidate. The vaccine represents a novel strategy for fighting the virus that causes AIDS by attempting to address one of the most daunting challenges in HIV vaccine design: the virus's extensive genetic diversity.

The team and its efforts are being led by Duke University Medical Center under consortium leader Dr. Barton Haynes, director of the Duke Human Vaccine Institute and the Center for HIV/AIDS Vaccine Immunology (CHAVI). The newly formed research coalition has begun designing an early phase safety trial to assess mosaic vaccines in humans. The trial will test the mosaic concept and could lead to the next generation of HIV vaccine candidates.

Traditional HIV vaccines are designed to stimulate the body's immune system to recognize naturally occurring stretches of specific amino acids in the virus' proteins. In contrast, mosaic vaccines are composed of many sets of synthetic, computer-generated sequences of proteins that can prompt the immune system to respond to a wide variety of circulating HIV strains.

Such vaccines have already been studied in animals and have shown some success in enhancing the breadth of immune responses. Results of those studies appeared earlier this year in Nature Medicine.

Haynes said the group will use the NYVAC vaccinia vector (derived from the vaccine to protect against smallpox) and DNA that contain a new set of artificial, computer-designed HIV genes in a Phase-I clinical trial to be supported by the Bill & Melinda Gates Foundation and the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health.

Haynes says the consortium hopes to launch human trials by late 2012.

Korber, a senior researcher in Los Alamos National Laboratory's Theoretical Division, led the team that developed the mosaic genes.

"HIV's diversity is vast, and the mosaic gene design represents a novel vaccine design to directly tackle HIV diversity in human clinical trials," said Korber. "Based on computational models, mosaic vaccines were predicted to perform better than natural HIV genes; experimental studies in animals, which directly compared mosaic to natural vaccines, supported that prediction. We are excited to test this concept in humans."

The consortium includes many of the world's leading researchers and organizations committed to finding an effective vaccine to protect against HIV infection, including The Foundation for the National Institutes of Health, the Fred Hutchinson Cancer Research Center and its NIH-funded HIV Vaccine Trials Network, the IPPOX Foundation in Switzerland, Beth Israel Deaconess Medical Center, Los Alamos National Laboratory, the NIH/NIAID Vaccine Research Center, Duke University and its Center for HIV/AIDS Vaccine Immunology, the Bill & Melinda Gates Foundation and the Division of AIDS of the National Institute of Allergy and Infectious Diseases.

"Each member of this consortium is also a member of the Global HIV Vaccine Enterprise, and this collaboration is truly a global effort to make progress on HIV vaccine development," said Haynes.


'/>"/>

Contact: James E. Rickman
jamesr@lanl.gov
505-665-9203
DOE/Los Alamos National Laboratory
Source:Eurekalert

Related biology news :

1. Aeras-led research consortium receives FDA support
2. Structural Genomics Consortium releases 1,000th protein structure
3. Aware to Introduce Several New Software Products at the Biometrics Consortium Conference
4. AOptix Technologies to Show Combined Biometric Face and Iris Capture System at Biometrics Consortium Conference
5. DOE awards UC San Diego consortium $9 million for algal biofuels research
6. WHOI joins consortium to study, minimize effects of Gulf Oil spill
7. Biomedical research infrastructure goes global: EU consortium Infrafrontier has new partners
8. Duke and the International Serious Adverse Event Consortium to partner on research
9. Duke and the Internationalserious Adverse Event Consortium to partner on research
10. University of Maryland School of Medicine receives $30 million to coordinate stem cell consortium
11. $15 million stimulus award creates national consortium for revealing scientific resources
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/24/2016)... -- Ampronix facilitates superior patient care by providing unparalleled technology to leaders of the ... latest premium product recently added to the range of products distributed by Ampronix. ... ... ... Display- Ampronix News ...
(Date:5/3/2016)... 2016  Neurotechnology, a provider of high-precision biometric ... Biometric Identification System (ABIS) , a complete system ... ABIS can process multiple complex biometric transactions with ... fingerprint, face or iris biometrics. It leverages the ... MegaMatcher Accelerator , which have been used ...
(Date:4/19/2016)... 2016 The new GEZE SecuLogic ... web-based "all-in-one" system solution for all door components. It ... the door interface with integration authorization management system, and ... The minimal dimensions of the access control and the ... installations offer considerable freedom of design with regard to ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... June 27, 2016 , ... Rolf K. ... the faculty of the University of North Carolina Kenan-Flagler Business School ... entrepreneurship at UNC Kenan-Flagler, with a focus on the school’s international efforts, leading ...
(Date:6/27/2016)... June 27, 2016   Ginkgo Bioworks , a ... engineering, was today awarded as one of the ... the world,s most innovative companies. Ginkgo Bioworks is ... the real world in the nutrition, health and ... directly with customers including Fortune 500 companies to ...
(Date:6/24/2016)... DIEGO , June 24, 2016 ... more sensitively detects cancers susceptible to PARP inhibitors ... circulating tumor cells (CTCs). The new test has ... HRD-targeted therapeutics in multiple cancer types. ... targeting DNA damage response pathways, including PARP, ATM, ...
(Date:6/24/2016)... (PRWEB) , ... June 24, 2016 , ... Researchers at ... most commonly-identified miRNAs in people with peritoneal or pleural mesothelioma. Their findings are the ... read it now. , Diagnostic biomarkers are signposts in the blood, lung fluid ...
Breaking Biology Technology: