Navigation Links
Confirmed: How plant communities endure stress
Date:1/30/2013

PROVIDENCE, R.I. [Brown University] Ecology is rife with predation, competition, and other dramatic "negative interactions," but those alone do not determine the course life on Earth. Organisms sometimes benefit each other, too, and according to the Stress Gradient Hypothesis, their "positive interactions" become measurably more influential when ecosystems become threatened by conditions such as drought. Ecologists have argued about the hypothesis ever since Brown University ecologist Mark Bertness co-proposed it in 1994; Bertness says a large new global meta-analysis he co-authored in Ecology Letters definitively shows that it is true.

The evidence, principally analyzed by former Brown visiting graduate student Qiang He of Shanghai Jiao Tong University in China, comes from 206 studies of 727 shifts of plant interactions amid varying degrees, or gradients, of stress on six continents. Examining the data from each paper and contacting original authors when necessary, He determined the overall trends across the many experiments.

In the vast majority of studies, as stress increased, the significance of interactions shifted toward mutual support in that positive interactions, such as those that promoted neighbors' survival, strengthened in influence, and negative interactions, such as those that hindered neighbors' growth, weakened. In some studies, stress did not change interactions, but negative interactions never increased as stress did, no matter what kinds of plants were involved, what kinds of conditions they were under, or where they were.

"Our results show that plant interactions generally change with increased environmental stress and always in the direction of an outright shift to facilitation (typical for survival responses) or a reduction in competition (typical from growth responses)," the authors wrote in the paper published online. "We never observed an increase in competition at higher stress. These findings were consistent across fitness measures, stress types, growth forms, life histories, origins, climatic zones, ecosystems and methodologies."

Analyses of studies of grasses, trees, and shrubs, for example, found that despite the obvious differences among these plant types, they all shifted toward less negative or more positive interactions.

"Typically, highly competitive species [e.g., grasses] have decreased competitive or neutral effects at high stress, whereas less competitive species [e.g., trees] have strong facilitative effects at high stress," the authors wrote.

Overall, the researchers found, studies with observations of greater degrees of stress increase "longer" stress gradients also observed greater degrees of shift toward positive interactions.

The hypothesis and the importance of positive interactions in ecology began to occur to Bertness in the 1970s and 1980s. As a junior faculty member at Brown, along the shores of Rhode Island, he noticed that seaweeds and barnacles would never survive the heat stress above the tides in isolation. They could only persist in groups, suggesting that with stress, organisms were better off together despite their competition than apart.

It's the same reason why sparsely planted gardens wilt in hot, dry conditions while more densely planted gardens survive. Mutually beneficial soil shading becomes more important than competition for that soil moisture when it becomes scarce.

Bertness published the Stress Gradient Hypothesis in Trends in Ecological Evolution with Ray Callaway, then a graduate student at the University of CaliforniaSanta Barbara. Callaway is now a professor at the University of Montana.

A shift in research?

Nearly two decades later with so much evidence now assembled, Bertness said, ecologists should feel confident enough in the Stress Gradient Hypothesis to employ it as a "rule of thumb." Rather than continuing to debate whether the hypothesis is valid, he said, researchers could now focus on crafting experiments to probe how much predictive value the hypothesis has and test its applications to conservation biology.

The hypothesis suggests, for example, that marine ecosystem managers who want to help tropical fish should focus on sustaining foundational species in the ecosystem, such as corals. With the ecosystem's foundation shored up the natural tendency among species toward greater positive interactions under stress should allow the fish to weather stress better.

"We're no longer in the casual, earlier stages of ecology," Bertness said. "In our lifetimes we're watching Caribbean coral reefs die, kelp forests die, and salt marshes and sea grass beds being decimated. We need to figure this stuff out quickly. These are no longer intellectual arguments without consequence."

In other words, with nature under stress, Bertness hopes that He's efforts to pull together the available data will lead ecologists to pull together so that they can apply the guidance the hypothesis provides.


'/>"/>
Contact: David Orenstein
david_orenstein@brown.edu
401-863-1862
Brown University
Source:Eurekalert  

Related biology news :

1. USDA grant advancing deadly plant disease, insect research
2. Breakthrough: How salt stops plant growth
3. Plants adapt to drought but limits are looming, study finds
4. How the protein transport machinery in the chloroplasts of higher plants developed
5. Giant tobacco plants that stay young forever
6. Invading species can extinguish native plants despite recent reports
7. Bugs need symbiotic bacteria to exploit plant seeds
8. Low extinction rates made California a refuge for diverse plant species
9. Study finds Jurassic ecosystems were similar to modern: Animals flourish among lush plants
10. Improving DNA amplification from problematic plants
11. Scientists join forces to bring plant movement to light
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Confirmed: How plant communities endure stress
(Date:3/20/2017)... At this year,s CeBIT Chancellor Dr. Angela Merkel visited ... to the DERMALOG stand together with the Japanese Prime Minster Shinzo Abe. ... the largest German biometrics company the two government leaders could see the ... well as DERMALOGĀ“s multi-biometrics system.   Continue Reading ... ...
(Date:3/13/2017)... HAMBURG, Germany , March 13, 2017 Future of ... ... DERMALOGs Face Matching enables to match ... characteristics forms the basis to identify individuals. (PRNewsFoto/Dermalog Identification Systems) ... DERMALOG,s "Face Matching" is the fastest software for ...
(Date:3/7/2017)... -- Brandwatch , the leading social intelligence company, today announces ... to uncover insights to support its reporting, help direct future campaigns, ... leading youth charity will be using Brandwatch Analytics social listening and ... understanding of the topics and issues that are a priority for ... "Until ...
Breaking Biology News(10 mins):
(Date:3/27/2017)... DUBLIN , March 27, 2017 ... access to a comprehensive library of reports on Valero ... the transportation fuels and petrochemical industries. ...      (Logo: http://photos.prnewswire.com/prnh/20160330/349511LOGO) ... is biofuel production to go green. Ethanol today, even though ...
(Date:3/27/2017)... , March 27, 2017  Trovagene, Inc. (NASDAQ: TROV), ... Chief Executive Officer, Bill Welch , will be ... 2017 at 9:00 AM EDT at the Essex House ... Welch, and Chief Scientific Officer, Mark Erlander , ... during the conference.   The presentation will be ...
(Date:3/24/2017)... , March 24, 2017 MiMedx Group, Inc. ... utilizing human placental tissue allografts and patent-protected processes to ... sectors of healthcare, announced today  that it will present ... York , NY.  Parker H. "Pete" Petit, Chairman ... Officer, Christopher M. Cashman , EVP and Chief ...
(Date:3/24/2017)... Ltd. ("Sinovac" or the "Company") (NASDAQ: SVA), a leading provider of ... its board of directors has amended its shareholder rights plan. The amendment ... to March 27, 2018. The amendment was not in response to any ... ... is a China -based biopharmaceutical company that focuses ...
Breaking Biology Technology: