Navigation Links
Computing toxic chemicals
Date:7/18/2013

A new computational method for working out in advance whether a chemical will be toxic will be reporting in a forthcoming issue of the International Journal of Data Mining and Bioinformatics.

There is increasing pressure on the chemical and related industries to ensure that their products comply with increasing numbers of safety regulations. Providing regulators, intermediary users and consumers with all the necessary information to allow them to make informed choices with respect to use, disposal, recycling, environmental issues and human health issues is critical. Now, Meenakshi Mishra, Hongliang Fei and Jun Huan of the University of Kansas, in Lawrence, have developed a computational technique that could allow the industry to predict whether a given compound will be toxic even at a low dose and thus allow alternatives to be found when necessary.

Toxicity is almost always an issue of availability and dosage. Whether or not a compound is natural or synthetic it can be toxic from snake venom and jellyfish stings to petrochemicals and pesticides. However, some chemicals are more toxic than others, exposure to a lower dose will cause health problems or potentially be lethal. It is very important to find a way to determine whether a newly discovered synthetic or natural chemical might cause toxicity problems.

The team also points out that the US Environmental Protection Agency (EPA) and the Office of Toxic Substances (OTS) in the USA had listed 70,000 industrial chemicals in the 1990s, with 1000 chemicals added each year for which even simple toxicological experiments had not been carried out. This is largely a problem of logistics and costs as well as the ethical question of whether so many tests, which would have to be carried out on laboratory animals, should be done at all.

Now, Huan and colleagues in the Department of Electrical Engineering and Computer Science at Kansas, have successfully tested a statistical algorithm against more than 300 chemicals for which the toxicity profile is already known. Their technique offers a computational method of screening a large number of compounds for obvious toxicity very quickly and might preclude the need for animal testing of the compounds, provided regulators don't insist on such "in vivo" data from the latter.

The research builds on well-established principles from the pharmaceutical industry known as Quantitative structure-activity relationships (QSARs) in which the type of atoms and how they are connected together can be correlated with the activity of a drug molecule. Certain molecular shapes and types are soluble in water, for instance, or interact in a certain way with different enzymes and other proteins in the body, leading to their overall activity. Different molecular features will make a similar molecule behave in a different way - more or less soluble, stronger or weaker acting. The team has now turned the QSAR around so that instead of searching for the features in a molecule that make it of benefit in medicine they look for the atomic groups and the type of bonds that hold them together to find associations with toxicity.

The team points out that few earlier attempts at predicting toxicity of chemicals have proved successful, most approaches are no better than random guessing. The team's new statistical approach combines "Random Forest" selection with "Nave Bayes" statistical analysis to boost the predictions well beyond random. They team saw prediction accuracy in 2 out of 3 chemicals tested. Given that there are around 100,000 industrial chemicals that need toxicity profiling, this result should allow the industry and regulators to focus on a large number of the most pressing of those, the ones predicted to have greatest toxicity and leave the less likely until additional resources are available.

The researchers are now tuning the algorithm to work faster and with greater precision so that it ignores common molecular features now known not to contribute to toxicity characteristics in the chemicals they have studied so far.


'/>"/>

Contact: Albert Ang
press@inderscience.com
Inderscience Publishers
Source:Eurekalert

Related biology news :

1. Keeneland Project deploys new GPU supercomputing system for the National Science Foundation
2. Towards computing with water droplets -- superhydrophobic droplet logic
3. Computing advances vital to sustainability efforts; new report recommends problem-focused, iterative approach to research
4. Green Oakley Cluster to double OSC computing power
5. Low levels of toxic proteins linked to brain diseases, study suggests
6. Children living near toxic waste sites experience higher blood lead levels resulting in lower IQ
7. Toxic waste sites cause healthy years of life lost
8. Science surprise: Toxic protein made in unusual way may explain brain disorder
9. Joint air toxics research project among tribes, agencies recognized for partnership
10. When hungry, Gulf of Mexico algae go toxic
11. Home toxic home
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/21/2016)... Nov. 21, 2016   Neurotechnology , a ... technologies, today announced that the MegaMatcher On Card ... submitted for the NIST Minutiae Interoperability Exchange ... the mandatory steps of the evaluation protocol. ... continuing test of fingerprint templates used to establish ...
(Date:11/15/2016)... Md. , Nov. 15, 2016  Synthetic ... company developing therapeutics focused on the gut microbiome, ... offering of 25,000,000 shares of its common stock ... common stock at a price to the public ... proceeds to Synthetic Biologics from the offering, excluding ...
(Date:6/22/2016)... American College of Medical Genetics and Genomics was once again ... of the fastest-growing trade shows during the Fastest 50 Awards ... Las Vegas . Winners are ... of the following categories: net square feet of paid exhibit ... 2015 ACMG Annual Meeting was ranked 23 out of 50 ...
Breaking Biology News(10 mins):
(Date:12/9/2016)... ... 2016 , ... DuPont Industrial Biosciences (DuPont) and Archer Daniels ... Award from Platts Global Energy for their platform technology to produce a ... the 18th Platts Global Energy Awards, held in New York on Thursday, Dec. 8. ...
(Date:12/9/2016)... 2016 The research report by ... in the  Global Label-Free Array Systems Market  accounted for ... 2015. Players such as Biacore, Agilent Technologies, ForteBio, Molecular ... the global market due to their unmatched product portfolio ... upgrades and timely product launches are expected to be ...
(Date:12/9/2016)... China Cord Blood Corporation (NYSE: CO ... leading provider of cord blood collection, laboratory testing, hematopoietic stem ... results of its 2016 Annual General Meeting, which was held ... China . At the Annual General ... KPMG Huazhen LLP as the independent auditors of the Company ...
(Date:12/9/2016)... , December 9, 2016 According to a ... (Primer, Probe, Custom, Predesigned, Reagent Equipment), Application (Research, PCR, Gene, DNA, ... 2021" published by MarketsandMarkets, the global market is expected to reach ... at a CAGR of 10.6% during the forecast period. ... ...
Breaking Biology Technology: