Navigation Links
Computer superpower strengthens attempts to combat common diseases
Date:3/5/2009

New large-scale sequencing technology will revolutionize biomedical research in the coming decade. Uppsala University's entity UPPMAX is now expanding its operations and providing researchers with a powerful system for large-scale compute and storage of data, which can lead to new breakthroughs in research on our public-health disorders.

Among other things, the new large-scale sequencing technology offers researchers the opportunity to understand the impact of the genome on the genesis of common diseases. Questions can be posed in a different way with more large-scale methods. For instance, the technology renders it possible to map all the bacteria in a person's mouth, to see why one individual develops malaria while another does not, and how the malaria parasite adapts in order to elude people's immune defences. It can also involve cataloguing all DNA modifications in a cancer cell. Furthermore, scientists have found regions in our genes that increase the risk of various common diseases such as cancer, diabetes, obesity, and autoimmune diseases. These regions were identified through the use of so-called SNP chips, but since then it has proven difficult to find the actual mutations that cause disease.

"The new sequencing methods supported by this funding offer tremendous potential for finding many of these mutations. Knowledge about the mutations and disease mechanisms will enable development of better, more targeted drugs," says Kerstin Lindblad-Toh, professor of comparative genomics.

Since extremely large quantities of data are produced in such studies, many terabytes of both data storage and primary memory in order to be able to deal with and analyze these data. Kerstin Lindblad-Toh, in collaboration with UPPMAX director Ingela Nystrm, has led the research team at Uppsala University that was recently granted SEK 13 million from the Knut and Alice Wallenberg Foundation (KAW) to construct a computing system that meets the needs of the sequencing platform that already exists at Uppsala University. At present there are three new technology sequencing machines, which make Uppsala University the largest player in the Nordic countries in this field. This position will now be strengthened even further.

Large-scale computations and large-scale storage, processing, and analysis of data play an ever greater role in many scientific fields. The Swedish National Infrastructure for Computing (SNIC) announced, together with KAW, that funding was available for resources for framework of SNIC's general resources. KAW contributed investment capital and SNIC operational and user support. Two of eight applications submitted were granted.

"Uppsala University hit the jackpot, since both projects have Uppsala researchers involved. One is for research on new energy materials that Professor Olle Eriksson is conducting, with colleagues, and the other is this visionary genome-sequencing research," says Ingela Nystrm.

The new computer system for DNA sequencing will be located at Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX) and will be run by the Center's systems experts. Since its establishment in 2003, UPPMAX has provided researchers, both locally and nationally, with computational power from a number of computer clusters. A previous allocation from SNIC in 2008 is earmarked for a new cluster of some 2000 computing cores and is under procurement. This new grant will add yet another cluster.

"What's more, our activities are expanding to include extensive data storage, some 500 terabytes. Some data will have to be stored up to ten years, which places special demands on the technology," says Ingela Nystrm.

SNIC has six member centers in Sweden (from north to south: HPC2N in Ume, UPPMAX in Uppsala, PDC in Stockholm, NSC in Linkping, C3SE in Gteborg, and Lunarc in Lund). With the two latest grants to UPPMAX, Uppsala University will play a significant role in providing Sweden's researchers with adequate infrastructure.

A dozen leading researchers collaborated on the application in order to attain the common goal of satisfying the need to be able to deal with the enormous quantities of data from modern sequencing technology. The researchers, Kerstin Lindblad-Toh, Ulf Gyllensten, Ann-Christine Syvnen, Leif Andersson, Siv Andersson, Rolf Ohlsson, Claes Wadelius, Erik Bongcam-Rudloff, Helgi B. Schith, Hans Ronne, and Joakim Lundeberg, all work with different biological problem complexes and submitted a joint application in order to have the new technologies function as efficiently as possible.


'/>"/>

Contact: Ingela Nystrom
ingela.nystrom@it.uu.se
46-070-167-9045
Uppsala University
Source:Eurekalert  

Related biology news :

1. New open-source software permits faster desktop computer simulations of molecular motion
2. Lifecycles of tropical cyclones predicted in global computer model
3. Singapore research team first place in Brain-Computer Interface contest
4. ORNL supercomputer simulation wins prize for fastest-running science application
5. Oak Ridge supercomputer is the worlds fastest for science
6. Supercomputer provides massive computational boost to biomedical research at TGen
7. Could Dr. House be replaced by a computer?
8. San Diego Supercomputer Center and UCSD announce Triton Resource
9. New data resource to advance computer-aided drug design
10. Coming soon: Self-guided, computer-based depression treatment
11. Motorola Introduces Mobile Biometric Identification for Handheld Computers
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Computer superpower strengthens attempts to combat common diseases
(Date:6/1/2016)... -- Favorable Government Initiatives Coupled With Implementation ... to Boost Global Biometrics System Market Through 2021  ... " Global Biometrics Market By Type, By End ... - 2021", the global biometrics market is projected to ... growing security concerns across various end use sectors such ...
(Date:5/16/2016)...   EyeLock LLC , a market leader of ... an IoT Center of Excellence in Austin, ... of embedded iris biometric applications. EyeLock,s iris ... security with unmatched biometric accuracy, making it the most ... EyeLock,s platform uses video technology to deliver a fast ...
(Date:5/3/2016)... , May 3, 2016  Neurotechnology, a ... the MegaMatcher Automated Biometric Identification System (ABIS) ... large-scale multi-biometric projects. MegaMatcher ABIS can process multiple ... using any combination of fingerprint, face or iris ... MegaMatcher SDK and MegaMatcher Accelerator , ...
Breaking Biology News(10 mins):
(Date:6/23/2016)...   Boston Biomedical , an industry leader ... target cancer stemness pathways, announced that its lead ... Designation from the U.S. Food and Drug Administration ... gastroesophageal junction (GEJ) cancer. Napabucasin is an orally ... stemness pathways by targeting STAT3, and is currently ...
(Date:6/23/2016)... June 23, 2016 Houston Methodist Willowbrook ... Cy-Fair Sports Association to serve as their official ... Houston Methodist Willowbrook will provide sponsorship support, athletic ... with association coaches, volunteers, athletes and families. ... Cy-Fair Sports Association and to bring Houston Methodist ...
(Date:6/23/2016)... -- The Biodesign Challenge (BDC), a university competition that asks ... systems and biotechnology, announced its winning teams at the ... York City . The teams, chosen ... MoMA,s Celeste Bartos Theater during the daylong summit. Keynote ... of architecture and design, and Suzanne Lee , ...
(Date:6/23/2016)... ... June 23, 2016 , ... STACS DNA Inc., the sample tracking ... Arkansas State Crime Laboratory, has joined STACS DNA as a Field Application Specialist. ... Jocelyn Tremblay, President and COO of STACS DNA. “In further expanding our capacity as ...
Breaking Biology Technology: