Navigation Links
Computer simulations point to key molecular basis of cystic fibrosis

Researchers from the University of North Carolina at Chapel Hill have identified a key molecular mechanism that may account for the development of cystic fibrosis, which about 1 in 3000 children are born with in the US every year. The findings, published February 29 in the open-access journal PLoS Computational Biology, add new knowledge to understanding the development of this disease and may also point the way to new corrective treatments.

Cystic fibrosis (CF) is a fatal disease caused by a defective gene that produces a misshapen form of the cystic fibrosis transmembrane conductance regulator (CFTR) protein. People with cystic fibrosis do not have enough CFTR for their cells to work normally because their bodies quickly destroy the mutant protein. The deletion of this protein specifically occurs in a major domain of CFTR called NBD1. Earlier experimental studies have shown that the mutant NBD1 has an increased tendency to misfold, resulting in the premature degradation of CFTR.

In CF, the molecular basis of this increased misfolding tendency has remained elusive, said team leader Nikolay Dokholyan.

Understanding molecular etiology of the disease is a key step to developing pharmaceutical strategies to fight this disease, Dokholyan said.

Using molecular dynamics simulations, the researchers performed extensive simulations of how normal and mutant NBD1 folded. Molecular dynamics simulation is akin to a virtual experiment wherein atoms and molecules are allowed to evolve according to known physical laws. Using computers, this virtual experiment allows researchers to view how atoms actually move. These simulations, when applied to the NBD1 protein, showed that the disease-causing mutant exhibits a higher misfolding tendency.

More importantly, by comparing the structures of the normal and the mutant NBD1 domains as they fold, the authors were able to determine critical pairs of amino acid residues that must come together for NBD1 to fold correctly. These interactions are modulators of CFTR folding, and hence, they are potential modulators of CF.

Computer simulations approximate our understanding of natural phenomena. That our simulations correlated with known experimental studies is remarkable, Dokholyan said. More importantly, the molecular details of aberrant NBD1 folding provides guidance for the design of small molecule drugs to correct the most prevalent and pathogenic mutation in CFTR.


Contact: Mary Kohut
Public Library of Science

Related biology news :

1. Primate behavior explained by computer agents
2. Computer program traces ancestry using anonymous DNA samples
3. A computer for your mouse!
4. New approach builds better proteins inside a computer
5. Computer solution to delivery problem
6. MSU researcher helps develop computer game for Ugandan children recovering from cerebral malaria
7. Improving detection of nuclear smuggling goal of computer model of mechanical engineer
8. Computer savvy canines
9. Brain-computer link systems on the brink of breakthrough, study finds
10. Computer learns dogspeak
11. Computer-based tool aids research, helps thwart questionable publication practices
Post Your Comments:
(Date:11/18/2015)... 18, 2015  As new scientific discoveries deepen our ... other healthcare providers face challenges in better using that ... In addition, as more children continue to survive pediatric ... and old age. John M. Maris, M.D ... of Philadelphia (CHOP) . --> John ...
(Date:11/17/2015)... Paris , qui s,est tenu ... Paris , qui s,est tenu du 17 au ... l,innovation biométrique, a inventé le premier scanner couplé, qui ... même surface de balayage. Jusqu,ici, deux scanners étaient nécessaires, ... digitales. Désormais, un seul scanner est en mesure de ...
(Date:11/16/2015)... SAN JOSE, Calif. , Nov 16, 2015 ... leading developer of human interface solutions, today announced ... new Synaptics TouchView ™ touch controller and ... the architectural revolution of smartphones. These new TDDI ... and include TD4100 (HD resolution), TD4302 (WQHD resolution), ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... , Nov. 25, 2015  PharmAthene, Inc. (NYSE ... has adopted a stockholder rights plan (Rights Plan) in ... operating loss carryforwards (NOLs) under Section 382 of the ... --> PharmAthene,s use of its NOLs could ... change" as defined in Section 382 of the Code. ...
(Date:11/25/2015)... QUEBEC CITY , Nov. 25, 2015 /PRNewswire/ ... "Company"), affirms that its business and prospects remain ... , Zoptrex™ (zoptarelin doxorubicin) recently received DSMB ... program to completion following review of the final ... met Phase 2 Primary Endpoint in men with ...
(Date:11/24/2015)... , Nov. 24, 2015  Asia-Pacific (APAC) holds ... organisation (CRO) market. The trend of outsourcing to ... margins but higher volume share for the region ... scale, however, margins in the CRO industry will ... Market ( ), finds that the ...
(Date:11/24/2015)... ... November 24, 2015 , ... Copper is an ... is bound to proteins, copper is also toxic to cells. With a $1.3 ... Institute (WPI) will conduct a systematic study of copper in the bacteria Pseudomonas ...
Breaking Biology Technology: