Navigation Links
Computer model predicts brain tumor growth and evolution

PROVIDENCE, R.I. [Brown University] Researchers from Brown University and other institutions have developed a computational computer model of how brain tumors grow and evolve.

The model is the product mathematical formulas based on the first principals of physics, such as conservation of mass, and it has allowed researchers to recreate tumor growth in a computer. Through subsequent repetitive testing against real tumors, they have also linked their computerized tumors to real-world brain tumors, or "gliomas," and can now watch tumor growth on a computer screen.

Creating such a model is significant because it could help design specific, targeted treatments for individualized therapy. There is no cure for gliomas, which can kill quickly, often within 15 months of diagnosis. Massachusetts Sen. Ted Kennedy announced a year ago that he was suffering from this type of tumor, a malignant glioma of the brain.

Details of the research were highlighted at an April meeting of the American Association for Cancer Research. The full article is included in the May 15 edition of the journal Cancer Research.

"This helps us design a treatment," said Elaine Bearer, the lead author and professor of pathology and laboratory medicine at Brown. "By testing potential therapies in the computer, we can get our new drugs much faster to patients."

Bearer, who also has faculty appointments in the Division of Engineering and the Department of Music, worked with a number of collaborators on the project, including co-author and Vittorio Christini, a mathematician at the University of Texas.

To conduct the study, Bearer and her collaborators developed a mathematical formula that incorporated a number of equations describing the process of tumor evolution and growth. The master computational model was built on formulas that predict how much oxygen tumor cells consume and the rate of oxygen diffusion, and quantitative measures of cell growth and metabolic rates. The model is a series of interdependent differential equations. Each equation includes variables, or numerical values that can be experimentally manipulated.

For example, to test if oxygen consumption rates influence tumor growth, the values assigned to those rates can be changed and the outcome observed on the computer screen not unlike playing a computer game. The result: A three-dimensional matrix of a glioma that can be adjusted to see what its growth stage will be over time, including speed of growth, size and shape.

Researchers validated their computational model with glioma specimens. Bearer studied about 40 different human brain tumor samples. Bryan Kinney, a member of Bearer's lab, obtained the samples from a number of sources, including the Rhode Island Hospital pathology department, the Columbia University Brain Bank and the Cooperative Human Tissue Network, a division of the National Cancer Institute that helps increase access to human cancer tissue for research.

The samples, sliced and sealed in a specimen slide, were as large as a chick pea or as small as the head of a pin. The tumor specimens used in the studies had been removed for diagnosis or surgical treatment of the tumor.

Researchers compared their virtual computational tumor with the actual human brain tumor samples at different stages of tumor evolution. Through many rounds of checking computer output against the real-life tumors, researchers created a computational model that mimicked natural biological tumors in all respects.

They focused specifically on a glioma because it does not invade the body through a basement membrane as epithelial-based cancers do, such as tumors that grow in the colon, breast or prostate. In the brain, tumors grow without having to digest a basement membrane to invade adjacent tissue. A basement membrane is essentially boundary of a given tissue that separates cells from the surrounding connective tissue.

Bearer said she hopes the research will allow doctors to find drug targets for glioma. She also envisions using the computational model to find targets for personalized medical therapies, enabling it to quickly identify molecular targets, and then select from existing treatments or design new treatments to stop the tumor.


Contact: Mark Hollmer
Brown University

Related biology news :

1. Caltech researchers train computers to analyze fruit-fly behavior
2. Collaboration leads to success: Most powerful computer of its kind in western N.Y. available worldwide
3. Computer simulations explain the limitations of working memory
4. Computer superpower strengthens attempts to combat common diseases
5. New open-source software permits faster desktop computer simulations of molecular motion
6. Lifecycles of tropical cyclones predicted in global computer model
7. Singapore research team first place in Brain-Computer Interface contest
8. ORNL supercomputer simulation wins prize for fastest-running science application
9. Oak Ridge supercomputer is the worlds fastest for science
10. Supercomputer provides massive computational boost to biomedical research at TGen
11. Could Dr. House be replaced by a computer?
Post Your Comments:
Related Image:
Computer model predicts brain tumor growth and evolution
(Date:6/16/2016)... June 16, 2016 The ... expected to reach USD 1.83 billion by 2024, ... Research, Inc. Technological proliferation and increasing demand in ... expected to drive the market growth. ... The development of advanced multimodal techniques for ...
(Date:6/3/2016)... , June 3, 2016 ... von Nepal hat ... Lieferung hochsicherer geprägter Kennzeichen, einschließlich Personalisierung, Registrierung ... in der Produktion und Implementierung von Identitätsmanagementlösungen. ... Ausschreibung im Januar teilgenommen, aber Decatur wurde ...
(Date:5/24/2016)... Ampronix facilitates superior patient care by providing unparalleled technology to leaders of ... the latest premium product recently added to the range of products distributed by Ampronix. ... ... ... Medical Display- Ampronix News ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... TOKYO , June 24, 2016  Regular discussions on ... to take place between the two entities said Poloz. ... in Ottawa , he pointed to the ... and the federal government. ... Poloz said, "Both institutions have common economic goals, why not ...
(Date:6/24/2016)... ... June 24, 2016 , ... While the majority of commercial spectrophotometers and ... and the 6000i models are higher end machines that use the more unconventional z-dimension ... light beam from the bottom of the cuvette holder. , FireflySci has developed ...
(Date:6/23/2016)... WA (PRWEB) , ... June 23, 2016 , ... ... announces the release of its second eBook, “Clinical Trials Patient Recruitment and Retention ... recruitment and retention in this eBook by providing practical tips, tools, and strategies ...
(Date:6/23/2016)... , June 23, 2016   Boston ... of novel compounds designed to target cancer stemness ... has been granted Orphan Drug Designation from the ... treatment of gastric cancer, including gastroesophageal junction (GEJ) ... inhibitor designed to inhibit cancer stemness pathways by ...
Breaking Biology Technology: