Navigation Links
Computational chemistry shows the way to safer biofuels
Date:7/30/2011

Replacing gasoline and diesel with plant-based bio fuels is crucial to curb climate change. But there are several ways to transform crops to fuel, and some of the methods result in bio fuels that are harmful to health as well as nature.

Now a study from the University of Copenhagen shows that it is possible to predict just how toxic the fuel will become without producing a single drop. This promises cheaper, faster and above all safer development of alternatives to fossil fuel.

Solvejg Jorgensen is a computational chemist at the Department of Chemistry in Copenhagen. Accounts of her new computational prediction tool are published in acclaimed scientific periodical The Journal of Physical Chemistry A.

Among other things the calculations of the computer chemist show that bio fuels produced by the wrong synthesis path will decompose to compounds such as health hazardous smog, carcinogenic particles and toxic formaldehyde. Previously an assessment of the environmental impact of a given method of production could not be carried out until the fuel had actually been made. Now Jorgensen has shown that various production methods can be tested on the computer. This will almost certainly result in cheaper and safer development of bio fuels.

"There is an almost infinite number of different ways to get to these fuels. We can show the least hazardous avenues to follow and we can do that with a series of calculations that take only days", explains Jorgensen.

Chemically bio fuel is composed of extremely large molecules. As they degrade during combustion and afterwards in the atmosphere they peel of several different compounds. This was no big surprise. That some compounds are more toxic than others did not come as a revelation either but Jorgensen was astonished to learn from her calculations that there is a huge difference in toxicity depending on how the molecules were assembled during production. She was also more than a little pleased that she could calculate very precisely the degradation mechanisms for a bio fuel molecule and do it fast.

"In order to find the best production method a chemist might have to test thousands of different types of synthesis. They just can't wait for a method that takes months to predict the degradation mechanisms", explains Jorgensen who continues: "On the other hand: For a chemist who might spend as much as a year trying to get the synthesis right it would be a disaster if their method leads to a toxic result".

It seems an obvious mission to develop a computational tool that could save thousands of hours in the lab. But Solvejg Jorgensen wasn't really all that interested in bio fuels. What she really wanted to do was to improve existing theoretical models for the degradation of large molecules in the atmosphere.

To this end she needed some physical analysis to compare to her calculations. Colleagues at the Department of Chemistry had just completed the analysis of two bio fuels. One of these would do nicely. But Jorgensen made a mistake. And instead of adding just another piece to a huge puzzle she had laid the foundation for a brand new method.

"I accidentally based my calculations on the wrong molecule, so I had to start over with the right one. This meant I had two different calculations to compare. These should have been almost identical but they were worlds apart. That's when I knew I was on to something important", says Solvejg Jorgensen, who has utilised her intimate knowledge of the theoretical tool density functional theory and the considerable computing power of the University of Copenhagen.


'/>"/>

Contact: Jes Andersen
jean@science.ku.dk
45-305-06582
University of Copenhagen
Source:Eurekalert  

Related biology news :

1. Plant biology meets up with computational wizardry
2. Stanford professor honored for contributions to computational biosciences
3. General Manifolds LLC Announces Issuance of US Patent in Computational Neuroscience
4. Computational model of swimming fish could inspire design of robots or medical prosthetics
5. Perspectives on computational biology methods
6. New computational method to uncover gene regulation
7. BTIs Brutnell leads part of NSF Computational Plant Biology Research System
8. New computational tool for cancer treatment
9. Computational microscope peers into the working ribosome
10. Petascale computational tools could revolutionize understanding of genomic evolution
11. Symposium marks 20th anniversary of Theoretical and Computational Biophysics Group
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Computational chemistry shows the way to safer biofuels
(Date:3/11/2016)... , March 11, 2016 ... new market research report "Image Recognition Market by Technology ... (Marketing and Advertising), by Deployment Type (On-Premises and Cloud), ... To 2022", published by MarketsandMarkets, the global market is ... to USD 29.98 Billion by 2020, at a CAGR ...
(Date:3/9/2016)... , March 9, 2016  Crossmatch ® ... and enrollment solutions, today announced the addition of ... Altus multi-factor authentication platform. New contextual ... managers to step-up security where it,s needed most ... Washington, DC . --> ...
(Date:3/2/2016)... March 2, 2016 ... addition of the  "Global Biometrics Market in ... ,     (Logo: http://photos.prnewswire.com/prnh/20130307/600769) , , Global biometrics ... at a CAGR of around 27%   ... has announced the addition of the  "Global ...
Breaking Biology News(10 mins):
(Date:5/6/2016)... ... May 06, 2016 , ... Crucial ... Clinical Studio Version 4.1, greatly improves performance of the platform. In particular, Version ... generate tremendous volumes of data to be collected on a per patient basis. ...
(Date:5/5/2016)...  Why are two uber-successful former agency presidents ... launching a new venture—yet going about things in a ... helping clients raise the value of their offerings in ... type of collaboration. The result is Elevate, ... medical device sectors. Elevate specializes in shaping and transforming ...
(Date:5/4/2016)... ... , ... Proove Biosciences, Inc. , the commercial and research leader in ... . The partnership is designed to advance research in pain genetics in an effort ... With the new agreement, researchers at Proove Biosciences are able to collaborate with Luda ...
(Date:5/4/2016)... ... May 04, 2016 , ... PBI-Gordon Corporation is pleased to announce Doug Obermann ... began his career at PBI-Gordon in February 1988, after finishing his masters in agronomy ... ranging from customer service to national product manager, to helping develop, name and launch ...
Breaking Biology Technology: