Navigation Links
Computational biology: Cells reprogrammed on the computer

Scientists at the Luxembourg Centre for Systems Biomedicine (LCSB) of the University of Luxembourg have developed a model that makes predictions from which differentiated cells for instance skin cells can be very efficiently changed into completely different cell types such as nerve cells, for example. This can be done entirely without stem cells. These computer-based instructions for reprogramming cells are of huge significance for regenerative medicine. The LCSB researchers present their results today in the prestigious scientific journal Stem Cells.

This is the first paper based solely on theoretical, yet practically proven, results of computational biology to be published in this journal. (DOI: 10.1002/stem.1473).

All cells of an organism originate from embryonic stem cells, which divide and increasingly differentiate as they do so. The ensuing tissue cells remain in a stable state; a skin cell does not spontaneously change into a nerve cell or heart muscle cell. "Yet the medical profession is greatly interested in such changes, nonetheless. They could yield new options for regenerative medicine," says Professor Antonio del Sol, head of the Computational Biology group at LCSB. The applications could be of enormous benefit: When nerve tissue becomes diseased, for example, then doctors could take healthy cells from the patient's own skin. They could then reprogram these to develop into nerve cells. These healthy nerve cells would then be implanted into the diseased tissue or even replace it entirely. This would treat, and ideally heal, diseases such as Parkinson's disease.

The techniques for cell programming are still in their infancy. Stem cell researchers Shinya Yamanaka and John Burdon received the Nobel Prize for converting differentiated body cells back into stem cells only last year. The first successful direct conversion of skin cells to nerve cells in the lab was in 2010. Biologists add refined cocktails of molecules, i.e. growth factors, to the cell cultures in a certain order. This allows them to control the genetic activity in the conversion process. However, this method so far has been largely guided by educated trial and error.

Variable jumping between different cell lines is possible

Now, the LCSB researchers have replaced trial and error with computer calculations, as computer scientist and PhD student at LCSB Isaac Crespo explains: "Our theoretical model first queries databases where vast amounts of information on gene actions and their effects are stored and then identifies the genes that maintain the stability of differentiated cells. Working from the appropriate records, the model suggests which genes in the starting cells need to be switched on and off again, and when, in order to change them into a different cell type."

"Our predictions have proved very accurate in the lab," says Professor del Sol: "And it turns out it makes no difference at all how similar the cells are. The models work equally well for cell lines that have only just branched off from one another as for those that are already very far apart." Prof. del Sol's and Crespo's model thus allows highly variable jumping between very different cell types without taking a detour via stem cells.

The biologists and medical scientists still have their lab work cut out for them: They have to identify all the growth factors that initiate the respective genetic activities in the correct, predicted order.


Contact: Britta Schlüter
University of Luxembourg

Related biology news :

1. GW announces creation of Computational Biology Institute to conduct integrated research
2. George Washington University Computational Biology Director solves 200-year-old oceanic mystery
3. A new computational method for timing the tree of life
4. Using computational biology for the annotation of proteins
5. Kirk, Spock together: Putting emotion, logic into computational words
6. Collaboration to establish new computational resources for metabolomics
7. New research projects to enhance bioinformatics and computational biology tools and methodologies
8. Infection biology: The elusive third factor
9. The Quarterly Review of Biology: Why some fats are worse than others
10. FASEB SRC announces conference registration open for: Melatonin Biology: Actions & Therapeutics
11. Developmental neurobiology: How the brain folds to fit
Post Your Comments:
(Date:4/15/2016)... , April 15, 2016 ... the,  "Global Gait Biometrics Market 2016-2020,"  report to ... ) , ,The global gait biometrics ... of 13.98% during the period 2016-2020. ... angles, which can be used to compute factors ...
(Date:4/13/2016)... April 13, 2016  IMPOWER physicians supporting Medicaid patients ... a new clinical standard in telehealth thanks to a ... the higi platform, IMPOWER patients can routinely track key ... body mass index, and, when they opt in, share ... visit to a local retail location at no cost. ...
(Date:3/31/2016)... 31, 2016  Genomics firm Nabsys has completed a ... Barrett Bready , M.D., who returned to the company ... technical leadership team, including Chief Technology Officer, John ... Steve Nurnberg and Vice President of Software and Informatics, ... Dr. Bready served as CEO of Nabsys ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... Hill, N.C. (PRWEB) , ... June 27, 2016 ... ... U.S. commercial operations for Amgen, will join the faculty of the University ... serve as adjunct professor of strategy and entrepreneurship at UNC Kenan-Flagler, with a ...
(Date:6/24/2016)... ... June 24, 2016 , ... While the majority of commercial ... Cary 5000 and the 6000i models are higher end machines that use the more ... the spectrophotometer’s light beam from the bottom of the cuvette holder. , FireflySci ...
(Date:6/23/2016)... , June 23, 2016 /PRNewswire/ - FACIT has ... Ontario biotechnology company, Propellon Therapeutics Inc. ... and commercialization of a portfolio of first-in-class WDR5 ... targets such as WDR5 represent an exciting class ... in precision medicine for cancer patients. Substantial advances ...
(Date:6/23/2016)... -- The Biodesign Challenge (BDC), a university competition that asks ... systems and biotechnology, announced its winning teams at the ... York City . The teams, chosen ... MoMA,s Celeste Bartos Theater during the daylong summit. Keynote ... of architecture and design, and Suzanne Lee , ...
Breaking Biology Technology: