Navigation Links
Compound has potential for new class of AIDS drugs

ANN ARBOR, Mich.---Researchers have developed what they believe is the first new mechanism in nearly 20 years for inhibiting a common target used to treat all HIV patients, which could eventually lead to a new class of AIDS drugs.

Researchers at the University of Michigan used computer models to develop the inhibiting compound, and then confirmed in the lab that the compound does indeed inhibit HIV protease, which is an established target for AIDS treatment. The protease is necessary to replicate the virus, says Heather Carlson, U-M professor of medicinal chemistry in the College of Pharmacy, and principal investigator of the study.

Carlson stresses this is a preliminary step, but still significant.

"It's very easy to make an inhibitor, (but) it's very hard to make a drug," said Carlson, who also has an appointment in chemistry. "This compound is too weak to work in the human body. The key is to find more compounds that will work by the same mechanism."

What's so exciting is how differently that mechanism works from the current drugs used to keep the HIV from maturing and replicating, she says. Current drugs called protease inhibitors work by debilitating the HIV-1 protease. This does the same, but in a different way, Carlson says.

A protease is an enzyme that clips apart proteins, and in the case of HIV drugs, when the HIV-1 protease is inhibited it cannot process the proteins required to assemble an active virus. In existing treatments, a larger molecule binds to the center of the protease, freezing it closed.

The new mechanism targets a different area of the HIV-1 protease, called the flap recognition pocket, and actually holds the protease open. Scientists knew the flaps opened and closed, but didn't know how to target that as a mechanism, Carlson says.

Carlson's group discovered that this flap, when held open by a very small molecule---half the size of the ones used in current drug treatments---also inhibits the protease.

In addition to a new class of drugs, the compound is key because smaller molecules have better drug-like properties and are absorbed much more easily.

"This new class of smaller molecules could have better drug properties (and) could get around current side effects," Carlson said. "HIV dosing regimes are really difficult. You have to take medicine several times in the day. Maybe you wouldn't have to do that with these smaller molecules because they would be absorbed differently."

Kelly Damm, a former student and now at Johnson & Johnson, initially had the idea to target the flaps in this new way, Carlson says.

"In a way, this works like a door jam. If you looked only at the door when it's shut, you'd not know you could put a jam in it," she said. "We saw a spot where we could block the closing event, but because everyone else was working with the closed form, they couldn't see it."


Contact: Laura Bailey
University of Michigan

Related biology news :

1. Chemical compound prevents cancer in lab
2. UF scientists discover compound that could lead to new blood pressure drugs
3. UDs Bobev receives NSF Early Career Award for research on novel compounds of rare Earth metals
4. A compound extracted from olives inhibits cancer cells growth and prevents their appearance
5. Protein protects brain against compound in lead poisoning, liver disease
6. New form of compound stimulates research on hydrogen storage
7. Natural compound in broccoli could treat devastating genetic skin disorder
8. Synthetic compound promotes death of lung-cancer cells, tumors
9. Chemical compound present in detergents produce bacteria alterations in agricultural soils
10. Naturally-occurring apple compounds reduce risk of pancreatic cancer
11. New microsensor measures volatile organic compounds in water and air on-site
Post Your Comments:
(Date:10/6/2015)... Calif. , Oct. 6, 2015  Maverix ... today announced enhancements to its software portfolio with ... analysis kit for differential expression in eukaryotes. The ... which is a cloud-based genomic analysis solution that ... scientific discovery from next-generation sequencing efforts. ...
(Date:10/2/2015)... , Oct. 02 2015 ... of the "Enforcing the Law Using Biometrics" ... ) has announced the addition of the ... to their offering. --> Research and ... of the "Enforcing the Law Using Biometrics" ...
(Date:9/30/2015)...  With nearly 300,000 Americans living with spinal cord ... to reach 12,500 annually, the role of Independent Living ... Independent Living (SCRS-IL) is increasingly important. SCRS-IL is ... opening doors to independence for individuals with SCIs ... assistive technology services and education. "In serving ...
Breaking Biology News(10 mins):
(Date:10/13/2015)... ... October 13, 2015 , ... InSphero ... of organotypic 3D cell culture models, has launched a 14 Day Hepatotoxicity ... patent-pending 3D InSightâ„¢ Human Liver Microtissues. The service streamlines toxicity testing of ...
(Date:10/13/2015)... Research and Markets( ) has announced ... for Bone Morphogenetic Protein Growth Factor Therapy - 16 ... --> --> Bone morphogenetic proteins ... bone after a fracture. In nature, these proteins have ... of the skeleton. There are twenty different BMPs that ...
(Date:10/13/2015)... October 13, 2015 " Microbiology Culture ... 2015 - 2023 " , the global microbiology ... anticipated to reach US$7.59 bn by 2023, expanding at a CAGR ... --> " Microbiology Culture Market - Global Industry Analysis, ... , the global microbiology culture market was valued at ...
(Date:10/13/2015)... ... October 13, 2015 , ... AxioMx Inc. , a ... received a Phase I Small Business Innovative Research (SBIR) grant (1R43GM112204-01A1). This Phase ... Sciences (NIGMS), will fund the development of a technique to rapidly convert single-chain ...
Breaking Biology Technology: