Navigation Links
Common bean genome sequence provides powerful tools to improve critical food crop

Huntsville, Ala. String bean, snap bean, haricot bean, and pinto and navy bean. These are just a few members of the common bean family scientifically called Phaseolus vulgaris. These beans are critically important to the global food supply. They provide up to 15 percent of calories and 36 percent of daily protein for parts of Africa and the Americas and serve as a daily staple for hundreds of millions of people.

Now, an international collaboration of researchers, led by Jeremy Schmutz of the HudsonAlpha Institute for Biotechnology and Phillip McClean, of North Dakota State University (NDSU) have sequenced and analyzed the genome of the common bean to begin to identify genes involved in critical traits such as size, flavor, disease resistance and drought tolerance. The study was funded by the US Department of Agriculture, National Institute of Food and Agriculture and the US Department of Energy Office of Science.

The researchers learned that, unlike most other food crops, the common bean was domesticated twice by humans about 8,000 years ago once in Mexico and once in South America through the selection of largely non-overlapping, unique subsets of genes.

"We found very little overlap, and very little mixing, among the two domesticated populations," said Jeremy Schmutz, who co-directs the HudsonAlpha Institute's Genome Sequencing Center and serves as the Plant Program Leader for the Department of Energy Joint Genome Institute. "Evolutionarily, this makes the common bean very unique and interesting."

Schmutz shares lead authorship of the current study, which was published on June 8 in Nature Genetics, with Phillip McClean, director of the genomics and bioinformatics program at NDSU. Scott Jackson, from the University of Georgia, is the senior author.

The HudsonAlpha Genome Sequencing Center specializes in the production of reference plant genomes and genomic resources with a focus on improving agriculture and developing plant-based energy sources. In 2010, Schmutz led a team of researchers that used the Center's unique facilities to be the first to sequence the genome of the soybean another vital global crop.

Identifying genes involved in the domestication of the common bean, and comparing locally adapted domesticated bean groups (called landraces) to their wild counterparts throughout Mexico and South America will help researchers understand how beans evolved, and how modern breeding programs might be improved to yield tastier, more-easily harvested, and, yes, even more-nutrient-packed beans. It may also help scientists to develop bean varieties resistant to pests, or better able to grow in challenging environments.

The common bean originated from a wild bean population in Mexico, and shares a common ancestor with the soybean. In addition to its role as a critical food crop, it serves as a partner in a symbiotic relationship with nitrogen-fixing bacteria to improve the soil in which it is planted.

"We're trying to understand what the common bean looked like before human intervention, to identify what occurred during early domestication and to apply that to modern bean breeding," said Schmutz. "Modern beans have been bred to fill specific expectations with regard to color, size and shape, and as a consequence have very little diversity. Studies such as this are necessary to identify genes that could be used to improve traits such as ease of harvest, flavor, yield and disease resistance."

Once genes are identified, they could be reintroduced into the population by selective breeding with wild populations, or careful breeding of existing landraces or even commercial beans. The Common Bean Coordinated Agricultural Project, or BeanCAP, launched in 2009 under the direction of study co-author McClean, is dedicated to the identification of gene markers that can be used in such breeding programs.

"The genome sequence has important implications for world-wide efforts to improve beans," said McClean. "The sequence will help breeders release varieties that are competitive with other crops and more climate resilient." The sequence revealed that disease resistance genes are highly clustered in the genome, knowledge that will lead to better breeding strategies to combat the many diseases that challenge the bean crop. Data from the study is being actively used by the many international bean breeders and geneticists to develop the next generation of molecular markers to aid bean breeding efforts.

From a global perspective, this information could be beneficial to farmers in developing countries that practice the intercropping system known as "milpa", where beans, corn, and occasionally squash, are planted together. The historical practice ensures that their land can continue to produce high-yield crops without resorting to adding fertilizers or other chemical methods of providing nutrients to the soil. McClean noted that "Breeders and genomic scientists in these countries are already working with the international bean community to utilize this important new genetic resource to address the production constraints unique to the "milpa" system."


Contact: Beth Pugh
HudsonAlpha Institute for Biotechnology

Related biology news :

1. Commonly used herbicides seen as threat to endangered butterflies
2. Common North American frog identified as carrier of deadly amphibian disease
3. Researchers uncover molecular pathway through which common yeast becomes fungal pathogen
4. New research about facial recognition turns common wisdom on its head
5. Commonly used diabetes drug may help to prevent primary liver cancer
6. Loyola study debunks common myth that urine is sterile
7. Dental X-rays linked to common brain tumor
8. Women & Infants participating in study of treatment of common viral infection in pregnancy
9. Clusters of cooperating tumor-suppressor genes are found in large regions deleted in common cancers
10. Modest alcohol intake associated with less inflammation in patients with common liver disease
11. Sulphur and iron compounds common in old shipwrecks
Post Your Comments:
(Date:11/2/2015)... MENLO PARK, Calif. , Nov. 2, 2015 /PRNewswire/ ... to $9 million to provide preclinical development services to ... Under the contract, SRI will provide scientific expertise, modern ... a wide variety of preclinical pharmacology and toxicology studies ... --> --> The PREVENT Cancer Drug ...
(Date:10/29/2015)... RESTON, Va. , Oct. 29, 2015 ... announced today that it has released a new version ... Daon customers in North America ... gains. IdentityX v4.0 also includes a FIDO UAF ... customers are already preparing to activate FIDO features. These ...
(Date:10/29/2015)... 29, 2015 NXTD ) ... focused on the growing mobile commerce market and ... StackCommerce, a leading marketplace to discover and buy ... smart wallet on StackSocial for this holiday season. ... the "Company"), a biometric authentication company focused on ...
Breaking Biology News(10 mins):
(Date:11/27/2015)... , Nov. 27, 2015 /PRNewswire/--  Mallinckrodt plc (NYSE: ... today that it has closed the sale of its ... Guerbet (GBT- NYSE Euronext) in a transaction valued at ... manufacturing facilities and a total of approximately 1,000 employees ... St. Louis area. This entire ...
(Date:11/26/2015)... England , November 26, 2015 ... medical device company specializing in imaging technologies, announced today that ... Commission as part of the Horizon 2020 European Union Framework ... out a large-scale clinical trial in breast cancer. ... , --> --> ...
(Date:11/25/2015)... 25, 2015 Studies reveal the ... plaque and pave the way for more effective treatment for ...     --> --> ... health problems in cats, yet relatively little was understood about ... studies have been conducted by researchers from the WALTHAM Centre ...
(Date:11/25/2015)... ... 25, 2015 , ... A long-standing partnership between the Academy ... been formalized with the signing of a Memorandum of Understanding. , AMA Executive ... Karl Minter and Capt. Albert Glenn Tuesday, November 24, 2015, at AMA Headquarters ...
Breaking Biology Technology: