Navigation Links
Common bean genome sequence provides powerful tools to improve critical food crop
Date:6/9/2014

Huntsville, Ala. String bean, snap bean, haricot bean, and pinto and navy bean. These are just a few members of the common bean family scientifically called Phaseolus vulgaris. These beans are critically important to the global food supply. They provide up to 15 percent of calories and 36 percent of daily protein for parts of Africa and the Americas and serve as a daily staple for hundreds of millions of people.

Now, an international collaboration of researchers, led by Jeremy Schmutz of the HudsonAlpha Institute for Biotechnology and Phillip McClean, of North Dakota State University (NDSU) have sequenced and analyzed the genome of the common bean to begin to identify genes involved in critical traits such as size, flavor, disease resistance and drought tolerance. The study was funded by the US Department of Agriculture, National Institute of Food and Agriculture and the US Department of Energy Office of Science.

The researchers learned that, unlike most other food crops, the common bean was domesticated twice by humans about 8,000 years ago once in Mexico and once in South America through the selection of largely non-overlapping, unique subsets of genes.

"We found very little overlap, and very little mixing, among the two domesticated populations," said Jeremy Schmutz, who co-directs the HudsonAlpha Institute's Genome Sequencing Center and serves as the Plant Program Leader for the Department of Energy Joint Genome Institute. "Evolutionarily, this makes the common bean very unique and interesting."

Schmutz shares lead authorship of the current study, which was published on June 8 in Nature Genetics, with Phillip McClean, director of the genomics and bioinformatics program at NDSU. Scott Jackson, from the University of Georgia, is the senior author.

The HudsonAlpha Genome Sequencing Center specializes in the production of reference plant genomes and genomic resources with a focus on improving agriculture and developing plant-based energy sources. In 2010, Schmutz led a team of researchers that used the Center's unique facilities to be the first to sequence the genome of the soybean another vital global crop.

Identifying genes involved in the domestication of the common bean, and comparing locally adapted domesticated bean groups (called landraces) to their wild counterparts throughout Mexico and South America will help researchers understand how beans evolved, and how modern breeding programs might be improved to yield tastier, more-easily harvested, and, yes, even more-nutrient-packed beans. It may also help scientists to develop bean varieties resistant to pests, or better able to grow in challenging environments.

The common bean originated from a wild bean population in Mexico, and shares a common ancestor with the soybean. In addition to its role as a critical food crop, it serves as a partner in a symbiotic relationship with nitrogen-fixing bacteria to improve the soil in which it is planted.

"We're trying to understand what the common bean looked like before human intervention, to identify what occurred during early domestication and to apply that to modern bean breeding," said Schmutz. "Modern beans have been bred to fill specific expectations with regard to color, size and shape, and as a consequence have very little diversity. Studies such as this are necessary to identify genes that could be used to improve traits such as ease of harvest, flavor, yield and disease resistance."

Once genes are identified, they could be reintroduced into the population by selective breeding with wild populations, or careful breeding of existing landraces or even commercial beans. The Common Bean Coordinated Agricultural Project, or BeanCAP, launched in 2009 under the direction of study co-author McClean, is dedicated to the identification of gene markers that can be used in such breeding programs.

"The genome sequence has important implications for world-wide efforts to improve beans," said McClean. "The sequence will help breeders release varieties that are competitive with other crops and more climate resilient." The sequence revealed that disease resistance genes are highly clustered in the genome, knowledge that will lead to better breeding strategies to combat the many diseases that challenge the bean crop. Data from the study is being actively used by the many international bean breeders and geneticists to develop the next generation of molecular markers to aid bean breeding efforts.

From a global perspective, this information could be beneficial to farmers in developing countries that practice the intercropping system known as "milpa", where beans, corn, and occasionally squash, are planted together. The historical practice ensures that their land can continue to produce high-yield crops without resorting to adding fertilizers or other chemical methods of providing nutrients to the soil. McClean noted that "Breeders and genomic scientists in these countries are already working with the international bean community to utilize this important new genetic resource to address the production constraints unique to the "milpa" system."


'/>"/>

Contact: Beth Pugh
bpugh@hudsonalpha.org
256-327-0443
HudsonAlpha Institute for Biotechnology
Source:Eurekalert

Related biology news :

1. Commonly used herbicides seen as threat to endangered butterflies
2. Common North American frog identified as carrier of deadly amphibian disease
3. Researchers uncover molecular pathway through which common yeast becomes fungal pathogen
4. New research about facial recognition turns common wisdom on its head
5. Commonly used diabetes drug may help to prevent primary liver cancer
6. Loyola study debunks common myth that urine is sterile
7. Dental X-rays linked to common brain tumor
8. Women & Infants participating in study of treatment of common viral infection in pregnancy
9. Clusters of cooperating tumor-suppressor genes are found in large regions deleted in common cancers
10. Modest alcohol intake associated with less inflammation in patients with common liver disease
11. Sulphur and iron compounds common in old shipwrecks
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/24/2016)... , May 24, 2016 Ampronix facilitates superior patient care by providing unparalleled ... medical LCD display is the latest premium product recently added to the range of ... ... ... Sony 3d Imaging- LCD Medical Display- Ampronix News ...
(Date:5/9/2016)... , UAE, May 9, 2016 ... it comes to expanding freedom for high net worth ... Even in today,s globally connected world, there is still ... system could ever duplicate sealing your deal with a ... second passports by taking advantage of citizenship via investment ...
(Date:4/26/2016)... LONDON , April 26, 2016 ... a product subsidiary of Infosys (NYSE: ... to integrate the Onegini mobile security platform with ... http://photos.prnewswire.com/prnh/20151104/283829LOGO ) The integration will ... to access and transact across channels. Using this ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... , ... June 23, 2016 , ... ... YM (Yeast and Mold) microbial test has received AOAC Research Institute approval 061601. ... microbial tests introduced last year,” stated Bob Salter, Vice President of Regulatory and ...
(Date:6/23/2016)... ... , ... Supplyframe, the Industry Network for electronics hardware design ... Located in Pasadena, Calif., the Design Lab’s mission is to bring together inventors ... and brought to market. , The Design Lab is Supplyframe’s physical representation of ...
(Date:6/23/2016)... , June 23, 2016  Blueprint Bio, a company ... to the medical community, has closed its Series A ... Nunez . "We have received a commitment ... capital we need to meet our current goals," stated ... us the runway to complete validation on the current ...
(Date:6/23/2016)... ... June 23, 2016 , ... Regulatory Compliance Associates® ... provides a free webinar on Performing Quality Investigations: Getting to Root ... CT at no charge. , Incomplete investigations are still a major concern to ...
Breaking Biology Technology: