Navigation Links
Common antifungal drug decreases tumor growth and shows promise as cancer therapy
Date:8/20/2012

AUSTIN, Texas An inexpensive antifungal drug, thiabendazole, slows tumor growth and shows promise as a chemotherapy for cancer. Scientists in the College of Natural Sciences at The University of Texas at Austin made this discovery by exploiting the evolutionary relatedness of yeast, frogs, mice and humans.

Thiabendazole is an FDA-approved, generic drug taken orally that has been in clinical use for 40 years as an antifungal. It is not currently used for cancer therapy.

Hye Ji Cha, Edward Marcotte, John Wallingford and colleagues found that the drug destroys newly established blood vessels, making it a "vascular disrupting agent." Their research was published in the journal PLOS Biology.

Inhibiting blood vessel, or vascular, growth can be an important chemotherapeutic tool because it starves tumors. Tumors induce new blood vessel formation to feed their out-of-control growth.

In trials using mice, the researchers found that thiabendazole decreased blood vessel growth in fibrosarcoma tumors by more than a half. Fibrosarcomas are cancers of the connective tissue, and they are generally heavily vascularized with blood vessels.

The drug also slowed tumor growth.

"This is very exciting to us, because in a way we stumbled into discovering the first human-approved vascular disrupting agent," said Marcotte, professor of chemistry. "Our research suggests that thiabendazole could probably be used clinically in combination with other chemotherapies."

The scientists' discovery is a culmination of research that crosses disciplines and organisms.

In a previous study, Marcotte and his colleagues found genes in single-celled yeast that are shared with vertebrates by virtue of their shared evolutionary history. In yeasts, which have no blood vessels, the genes are responsible for responding to various stresses to the cells. In vertebrates, the genes have been repurposed to regulate vein and artery growth, or angiogenesis.

"We reasoned that by analyzing this particular set of genes, we might be able to identify drugs that target the yeast pathway that also act as angiogenesis inhibitors suitable for chemotherapy," said Marcotte.

Turns out they were right.

Cha, a graduate student in cell and molecular biology at the university, searched for a molecule that would inhibit the action of those yeast genes. She found that thiabendazole did the trick.

She then tested the drug in developing frog embryos. These are fast growing vertebrates in which scientists can watch blood vessel growth in living animals.

Cha found that frog embryos grown in water with the drug either didn't grow blood vessels or grew blood vessels that were then dissolved away by the drug. Interestingly, when the drug was removed, the embryos' blood vessels grew back.

Cha then tested the drug on human blood vessel cells growing in Petri dishes, finding that the drug also inhibited their growth. Finally, she tested the drug on fibrosarcoma tumors in mice and found that it reduced blood vessel growth in the tumors as well as slowed the tumors' growth.

"We didn't set out to find a vascular disrupting agent, but that's where we ended up," said Wallingford, associate professor of developmental biology and Cha's graduate advisor with Marcotte. "This is an exciting example of the power of curiosity-driven research and the insights that can come from blending disciplines in biology."

The scientists' goal is now to move the drug into clinical trials with humans. They are talking with clinical oncologists about next steps.

"We hope the clinical trials will be easier because it is already approved by the FDA for human use," said Marcotte.


'/>"/>

Contact: Lee Clippard
clippard@austin.utexas.edu
512-232-0675
University of Texas at Austin
Source:Eurekalert  

Related biology news :

1. Commonly used herbicides seen as threat to endangered butterflies
2. Common North American frog identified as carrier of deadly amphibian disease
3. Researchers uncover molecular pathway through which common yeast becomes fungal pathogen
4. New research about facial recognition turns common wisdom on its head
5. Commonly used diabetes drug may help to prevent primary liver cancer
6. Loyola study debunks common myth that urine is sterile
7. Dental X-rays linked to common brain tumor
8. Women & Infants participating in study of treatment of common viral infection in pregnancy
9. Clusters of cooperating tumor-suppressor genes are found in large regions deleted in common cancers
10. Modest alcohol intake associated with less inflammation in patients with common liver disease
11. Sulphur and iron compounds common in old shipwrecks
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Common antifungal drug decreases tumor growth and shows promise as cancer therapy
(Date:4/3/2017)... , April 3, 2017  Data ... precision engineering platform, detected a statistically significant ... product prior to treatment and objective response ... the potential to predict whether cancer patients ... to treatment, as well as to improve ...
(Date:3/30/2017)... HONG KONG , March 30, 2017 ... developed a system for three-dimensional (3D) fingerprint identification by adopting ground ... technology into a new realm of speed and accuracy for use ... applications at an affordable cost. ... ...
(Date:3/29/2017)... 2017  higi, the health IT company that operates ... America , today announced a Series B investment ... EveryMove. The new investment and acquisition accelerates higi,s strategy ... transform population health activities through the collection and workflow ... higi collects and secures data today on behalf of ...
Breaking Biology News(10 mins):
(Date:7/26/2017)... ... July 25, 2017 , ... Provia ... are necessary in the preparation and development of human cells and tissues for ... the US Food and Drug Administration’s (FDA) Current Good Manufacturing Practices (cGMP) guidelines ...
(Date:7/26/2017)... REHOVOT, Israel (PRWEB) , ... July 26, 2017 ... ... EVGN), a leading company for the improvement of crop productivity and economics for ... a multiyear collaboration. The scope of the agreement includes the research and development ...
(Date:7/25/2017)... CT (PRWEB) , ... July 25, 2017 , ... ... products that enhance the microbiome and improve efficiency of livestock farming while reducing ... that it has licensed additional intellectual property from Cornell University. , These ...
(Date:7/24/2017)... FL (PRWEB) , ... July ... ... Strategic Analyst, Kenny Soulstring, today announced that the stock market news outlet ... in risk assessment diagnostic testing that screens and identifies exposure, progression and ...
Breaking Biology Technology: