Navigation Links
Commercial yeasts upgraded with an enzyme for biofuel production
Date:2/24/2009

This release is available in German.

Eckhard Boles, co-founder of the Swiss biofuel company Butalco GmbH and a professor at Goethe-University in Frankfurt, Germany, has discovered a new enzyme which teaches yeast cells to ferment xylose into ethanol. Xylose is an unused waste sugar in the cellulosic ethanol production process. The researchers have recently filed a patent application for their process.

In industrial fermentation processes, the yeast Saccharomyces cerevisiae is commonly used for ethanol production. Current bioethanol production technologies can use only parts of the plants, namely the storage sugars, like glucose, sucrose or starch. However, this technology is in competition with food and feed production. Eckhard Boles, co-founder of the Swiss biofuel company Butalco GmbH and a professor at Goethe-University in Frankfurt, Germany, has therefore searched for ways of teaching the microorganisms to convert waste sugars, xylose and arabinose, into ethanol. Now, Boles and his colleagues have succeeded in genetically modifying industrial yeast strains, thus producing ethanol from xylose in a single step. Having already succeeded in transforming arabinose into ethanol by genetically modified yeast strains, Boles and his team have now found an efficient way to convert most of the plants energy into biofuel.

"Up to now scientists considered it as unpromising to equip yeast with a bacterial enzyme capable of converting xylose", Boles explains, "because all attempts had failed". But he and his team continued trying by exploring the enormous amounts of information in current genetic databases. Step by step they took 12 enzymes from different bacterial organisms and inserted the enzymes into yeast cells. Finally they discovered a new enzyme that even worked in yeast cells from a commercial ethanol plant. In contrast to current cellulosic ethanol technologies the new enzyme can convert xylose in a single step and is not inhibited by other chemical compounds normally present within the yeast cells. The researchers have recently filed a patent application for their process. "This is a break-through in the commercialisation of cellulosic ethanol", comments Boles.

Boles says: "We have successfully demonstrated the conversion of waste sugars into ethanol. However, ethanol is not the best renewable biofuel. There are other alcohols with many more promising properties." Together with his company, Butalco GmbH, Boles is now constructing yeast strains to convert plant waste materials into biobutanol, which is being seen as a more superior alternative fuel than ethanol due to its more favourable chemical and physical properties.


'/>"/>

Contact: Eckhard Boles
e.boles@bio.uni-frankfurt.de
49-697-982-9513
Goethe University Frankfurt
Source:Eurekalert

Related biology news :

1. bioMETRX, Inc. Welcomes Residential and Commercial Security Expert to Board of Directors
2. Commercial aquatic plants offer cost-effective method for treating wastewater
3. MSU technology that converts plant fibers to biofuel commercialized
4. OHSU commercial collaborations have surged
5. Commercialization aim of grant supporting technology that destroys cancer cells
6. Food scientists confirm commercial product effectively kills bacteria in vegetable washwater
7. NOAA proposes rule to prevent commercial harvesting of krill
8. OCAST funds OSU projects with commercial viability
9. IEEE Homeland Security Conference Business Panel to feature experts on technology commercialization
10. UTMB inventions win University of Texas System commercialization awards
11. Computers explain why pears may become brown during commercial storage
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/13/2017)... Jan. 13, 2017 Sandata Technologies, LLC, ... the homecare industry, including Electronic Visit Verification™ (EVV™), ... Justin Jugs, as Senior Vice President of Product ... years of homecare experience to Sandata, where he ... plans to align Sandata,s suite of solutions with ...
(Date:1/11/2017)... 11, 2017  Michael Johnson, co-founder of Visikol Inc. a company ... has been named to the elite "Forbes 30 Under 30" list ... 600 people in 20 fields nationwide to be recognized as a ... applicants were selected. ... He is currently a PhD candidate at Rutgers University. ...
(Date:1/4/2017)... LAS VEGAS , Jan. 4, 2017 /PRNewswire/ ... in performance biometric sensor technology, today announced the ... Benchmark™ sensor systems, the highly-accurate biometric sensor ... ® biometric technology, experience and expertise. The ... of Benchmark designed specifically for hearables, and Benchmark ...
Breaking Biology News(10 mins):
(Date:1/18/2017)... , Jan. 18, 2017   Boston Biomedical , ... designed to target cancer stemness pathways, will feature data ... napabucasin, at the 2017 ASCO Gastrointestinal Cancers Symposium, held ... . Napabucasin is an orally-administered investigational ... STAT3. i Cancer stem cells (CSCs) possess the ...
(Date:1/18/2017)... HACKENSACK, N.J. , Jan. 18, 2017   ... leading the fight to end Duchenne muscular dystrophy ... awarded to the New Jersey Institute of Technology (NJIT) ... ongoing exploration of robotic technology to assist ... study to incorporate NJIT,s technology – an embedded computer, ...
(Date:1/18/2017)... ... January 18, 2017 , ... Total Orthopedics and Sports ... A-CIFT™ Solofuse-P™. The operation took place on Wednesday, January 11, 2017 at Long ... an anterior cervical discectomy and fusion on a 42 year old female who ...
(Date:1/18/2017)... (PRWEB) , ... January 18, 2017 , ... ... new federally funded bio-focused Manufacturing Innovation Institutes (MII). U.S. Secretary of Commerce Penny ... Manufacturing Biopharmaceuticals (NIIMBL), and the Department of Defense has announced the award of ...
Breaking Biology Technology: