Navigation Links
Commercial aquatic plants offer cost-effective method for treating wastewater
Date:9/29/2008

CLEMSON, SC Nursery and greenhouse operations depend on the use of fertilizers, growth regulators, insecticides, and fungicides. Growers also rely on the use of soilless media, or substrate, in the production of container crops. Concerns arise when excessive irrigation of the container crops grown in soilless media leads to leaching and loss of nutrients and chemicals in runoff. The resulting runoff can escape from production areas and have a negative impact on surface and ground water.

The presence of nutrients in runoff and concerns of their impact on surface and groundwater quality has undergone increasing interest and scrutiny from the public, environmental groups, governmental agencies, and elected officials. Since its enactment, the U.S. Environmental Protection Agency (EPA) has enforced provisions of the Clean Water Act related to point-source pollution. In 1999, the EPA began enforcing nonpoint source pollution controls, mandating that all states implement a Total Maximum Daily Load (TMDL) program for all watersheds and bodies of water.

Constructed wetlands (CWs) have been promoted as inexpensive, low-technology approaches to treating agricultural, industrial, and municipal wastewater to comply with increasingly stringent environmental regulations. CWs, or marshes built to treat contaminated water, incorporate soil and drainage materials, water, plants, and microorganisms. "Surface-flow" constructed wetlands resemble shallow freshwater marshes and generally require a large land area for wastewater treatment. More effective for greenhouse and nursery operations with limited production space and expensive land are a type of constructed wetland called "subsurface flow". Subsurface flow wetlands consist of a lined or impermeable basin filled with a coarse medium, typically gravel, and wetland plants. Wastewater flows horizontally or vertically below the surface of the media to prevent exposure to humans or wildlife.

Robert Polomski and his colleagues at Clemson University published a study in the June 2008 issue of HortScience that investigated the nitrogen and phosphorus removal potential by a vegetated, laboratory-scale subsurface flow system. "In this study, we investigated a cost-effective approach of reducing water treatment costs. Instead of traditional wetland plants, we found that commercially available aquatic garden plants can be used in a production/remediation system."

Over an eight-week period, five commercially available aquatic garden plants received a range of nitrogen and phosphorus that spanned the rates detected in nursery runoff. According to Polomski, "the results support the use of aquatic garden plants as aesthetic and economically viable alternatives to traditional wetland plants in constructed wetlands. Although more research is necessary to address other variables, the study concluded that the use of commercially produced plants in constructed wetlands has the potential to generate revenue for producers.


'/>"/>

Contact: Michael W. Neff
mwneff@ashs.org
703-836-4606
American Society for Horticultural Science
Source:Eurekalert

Related biology news :

1. MSU technology that converts plant fibers to biofuel commercialized
2. OHSU commercial collaborations have surged
3. Commercialization aim of grant supporting technology that destroys cancer cells
4. Food scientists confirm commercial product effectively kills bacteria in vegetable washwater
5. NOAA proposes rule to prevent commercial harvesting of krill
6. OCAST funds OSU projects with commercial viability
7. IEEE Homeland Security Conference Business Panel to feature experts on technology commercialization
8. UTMB inventions win University of Texas System commercialization awards
9. Computers explain why pears may become brown during commercial storage
10. OHSU turns innovations into commercial opportunities at record pace
11. A common aquatic animals genome can capture foreign DNA
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/20/2016)... 2016  VoiceIt is excited to announce its ... By working together, VoiceIt and VoicePass will ... VoicePass take slightly different approaches to voice biometrics, ... and usability. ... partnership. "This marketing and technology partnership ...
(Date:5/3/2016)... May 3, 2016  Neurotechnology, a provider of ... MegaMatcher Automated Biometric Identification System (ABIS) , a ... projects. MegaMatcher ABIS can process multiple complex biometric ... combination of fingerprint, face or iris biometrics. It ... and MegaMatcher Accelerator , which have ...
(Date:4/26/2016)... April 27, 2016 Research ... Multi-modal Biometrics Market 2016-2020"  report to their offering.  ... The analysts forecast the global multimodal ... 15.49% during the period 2016-2020.  Multimodal ... sectors such as the healthcare, BFSI, transportation, automotive, ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... June 27, 2016 , ... Rolf K. Hoffmann, ... faculty of the University of North Carolina Kenan-Flagler Business School effective ... at UNC Kenan-Flagler, with a focus on the school’s international efforts, leading classes ...
(Date:6/24/2016)... June 24, 2016  Regular discussions on a range of ... between the two entities said Poloz. Speaking at ... Ottawa , he pointed to the country,s inflation target, ... government. "In certain ... institutions have common economic goals, why not sit down and ...
(Date:6/24/2016)... ... June 24, 2016 , ... Researchers at the Universita Politecnica delle Marche in ... peritoneal or pleural mesothelioma. Their findings are the subject of a new article on ... biomarkers are signposts in the blood, lung fluid or tissue of mesothelioma patients that ...
(Date:6/23/2016)... CAMBRIDGE, Mass. , June 23, 2016 /PRNewswire/ ... the development of novel compounds designed to target ... compound, napabucasin, has been granted Orphan Drug Designation ... in the treatment of gastric cancer, including gastroesophageal ... cancer stemness inhibitor designed to inhibit cancer stemness ...
Breaking Biology Technology: