Navigation Links
Columbia University scientist devises new way to more rapidly generate bone tissue
Date:12/15/2008

NEW YORK (Dec. 15, 2008) Using stem cell lines not typically combined, researchers at Columbia University Medical Center have designed a new way to "grow" bone and other tissues.

The inability to foster angiogenesis a physiological process involving the growth of new blood vessels from pre-existing vessels has been a major roadblock in tissue regeneration. Previous approaches have included the use of angiogenic growth factors and the fabrication of artificial blood vessels. However, there are problems associated with these approaches. Among these problems: artificially fabricated blood vessels do not readily branch out and network with host blood vessels, and blood vessels induced by angiogenic growth factors tend to be immature and "leaky."

To overcome these obstacles, a team of Columbia researchers has co-transplanted hematopoietic and mesenchymal stem/progenitor cells to promote the regeneration of vascularized tissues. What they found was that the tissue regenerated in bone more rapidly than when either type of stem cell was used alone.

The work by Jeremy Mao, DDS, Ph.D., published today in the Public Libraries of Science, takes a new approach: rarely have mesenchymal and hematopoietic cells been delivered in combination for the healing of defects and the treatment of diseases partially due to the separate research communities in which these two cell groups are studied.

"Dr. Mao's research in tissue engineering represents the fruits of interdisciplinary science. His work has relevance for oral health care, as well as many other health care disciplines," said Dr. Ira Lamster, Dean of the Columbia University College of Dental Medicine.

Dr. Mao and colleagues demonstrated that when human mesenchymal stem/progenitor cells were seeded in micropores of 3D calcium phosphate scaffolds, followed by infusion of gel-suspended CD34+ hematopoietic cells, greater vascularization was seen in mice than when mesenchymal cells were used alone.

Furthermore, Dr. Mao's team found that the number of vessels and the diameter of the vessels produced by the co-transplantation of hematopoietic and mesenchymal to create vascularized tissue were dramatically increased when combined with Vascular Endothelial Growth Factor or VEGF.

"The work has potential beyond bones and may have implications for the growth of muscle, nerve and organs," Dr. Mao said. "The synergistic action of mesenchymal cells and hematopoietic cells provide an alternative approach for regrowing a host of vascular tissues."


'/>"/>

Contact: Alex Lyda
mal2133@columbia.edu
212-305-0820
Columbia University Medical Center
Source:Eurekalert

Related biology news :

1. Salmon smolt survival similar in Columbia and Fraser rivers
2. Similar survival rates for Pacific salmon in Fraser, Columbia Rivers raises new questions
3. Columbia to award 2008 Horwitz Prize to Arthur Horwich & Ulrich Hartl for cellular protein folding
4. Columbia geneticists uncover new gene involved in determining hair texture and density in humans
5. Columbia researchers: Growth of CT scan use may lead to significant public health problem
6. 3 Columbia University Medical Center faculty elected to Institute of Medicine
7. Columbia to award 2007 Horwitz Prize to three generations of teacher-student scientists
8. Queens University Belfast plays leading role in Europe-wide tests for safer food
9. Wii bit of fun at Rice University has serious intent
10. Rice University study finds possible clues to epilepsy, autism
11. World Energy Outlook to be presented at Rice University Dec. 9
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:12/6/2016)... 6, 2016 Securus Technologies, a leading ... for public safety, investigation, corrections and monitoring, and ... a five (5) year funding commitment by Securus ... the rehabilitation and reentry support to more inmates ... in 2004, the Prison Entrepreneurship Program (PEP) is ...
(Date:12/2/2016)... , December 1, 2016 ... type (Fingerprint, Voice), Future Technology (Iris Recognition System), ... Region - Global Forecast to 2021", published by ... 442.7 Million in 2016, and is projected to ... a CAGR of 14.06%.      (Logo: ...
(Date:11/30/2016)... , Nov. 30, 2016 Not many of us realize that we ... of recovery so we need to do it well. Inadequate sleep levels have been ... blood pressure, stroke, diabetes, and even cancer. Maybe now is the best ... that could help them to manage their sleep quality? ... ...
Breaking Biology News(10 mins):
(Date:12/8/2016)... ... December 08, 2016 , ... KBioBox llc announced ... client demand KbioBox developed a sophisticated “3 click” gene dditing off target analysis ... KBioBox’s new website, https://www.kbiobox.com/ and powered by the company’s proprietary ...
(Date:12/8/2016)... , Dec. 8, 2016  Soligenix, Inc. ... biopharmaceutical company focused on developing and commercializing products ... unmet medical need, announced today the long-term follow-up ... SGX942 (dusquetide), a first-in-class Innate Defense Regulator (IDR), ... head and neck cancer patients undergoing chemoradiation therapy ...
(Date:12/8/2016)... Korea , Dec. 8, 2016 Eutilex ... $21 billion KRW (US $18.9M) Series A financing. This ... Investment, G.N. Tech Venture and SNU Bio Angel. This ... to 30.5 billion KRW (US $27.7M) since its founding ... Eutilex to bolster the development and commercialization of its ...
(Date:12/7/2016)... ... 07, 2016 , ... A new study published in the ... treated, advanced pancreatic cancer, liquid biopsies are not yet an adequate substitute for ... blood sampling may improve the value of a blood-based test.” The study was ...
Breaking Biology Technology: