Navigation Links
Colon cancer researchers target stem cells, discover viable new therapeutic path
Date:12/1/2013

(TORONTO, Canada Dec. 1, 2013) - Scientists and surgeons at Princess Margaret Cancer Centre have discovered a promising new approach to treating colorectal cancer by disarming the gene that drives self-renewal in stem cells that are the root cause of disease, resistance to treatment and relapse. Colorectal cancer is the third leading cause of cancer-related death in the Western world.

"This is the first step toward clinically applying the principles of cancer stem cell biology to control cancer growth and advance the development of durable cures," says principal investigator Dr. John Dick about the findings published online today in Nature Medicine.

He talks about the research in this video - click the link to watch: https://www.youtube.com/watch?v=QK7JquljkBc.

Dr. Dick pioneered the cancer stem cell field by first identifying leukemia stem cells (1994) and colon cancer stem cells (2007). He is also renowned for isolating a human blood stem cell in its purest form as a single stem cell capable of regenerating the entire blood system paving the way for clinical use (2011). Dr. Dick holds a Canada Research Chair in Stem Cell Biology and is a Senior Scientist at University Health Network's Princess Margaret Cancer Centre and McEwen Centre for Regenerative Medicine. He is also a Professor in the Department of Molecular Genetics, University of Toronto, and Director of the Cancer Stem Cell Program at the Ontario Institute for Cancer Research.

In pre-clinical experiments, the research team replicated human colon cancer in mice to determine if specifically targeting the stem cells was clinically relevant. First, the researchers identified that the gene BMI-1, already implicated in maintaining stem cells in other cancers, is the pivotal regulator of colon cancer stem cells and drives the cycle of self-renewal, proliferation and cell survival. Next, the team used an existing small-molecule inhibitor to successfully block BMI-1, thus demonstrating the clinical relevance of this approach.

Lead author Dr. Antonija Kreso writes: "Inhibiting a recognized regulator of self-renewal is an effective approach to control tumor growth, providing strong evidence for the clinical relevance of self-renewal as a biological process for therapeutic targeting."

Dr. Dick explains: "When we blocked the BMI-1 pathway, the stem cells were unable to self-renew, which resulted in long-term and irreversible impairment of tumour growth. In other words, the cancer was permanently shut down."

Surgeon-scientist Dr. Catherine O'Brien, senior co-author of the study says: "The clinical potential of this research is exciting because it maps a viable way to develop targeted treatment for colon cancer patients. It is already known that about 65% have the BMI-1 biomarker. With the target identified, and a proven way to tackle it, this knowledge could readily translate into first-in-human trials to provide more personalized cancer medicine."


'/>"/>

Contact: Jane Finlayson
jane.finlayson@uhn.ca
416-946-2846
University Health Network
Source:Eurekalert  

Related biology news :

1. Hardworking sisters enable insect colonies to thrive
2. Colon cancer screening guidelines may miss 10 percent of colon cancers
3. Research shows how aspirin may act on blood platelets to improve survival in colon cancer patients
4. Scientists learn how soy foods protect against colon cancer
5. New 3-D colonoscopy eases detection of precancerous lesions
6. Scientists discover thriving colonies of microbes in ocean plastisphere
7. University of Tennessee professor links massive prehistoric bird extinction to human colonization
8. Researchers id queens, mysterious disease syndrome as key factors in bee colony deaths
9. Cleveland Clinic develops clinical screening program for no.1 genetic cause of colon cancer
10. Two-faced cells discovered in colon cancer
11. E. coli adapts to colonize plants
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Colon cancer researchers target stem cells, discover viable new therapeutic path
(Date:3/28/2017)... , March 28, 2017 The ... Hardware (Camera, Monitors, Servers, Storage Devices), Software (Video Analytics, ... Region - Global Forecast to 2022", published by MarketsandMarkets, ... 2016 and is projected to reach USD 75.64 Billion ... and 2022. The base year considered for the study ...
(Date:3/24/2017)... Controller General of Immigration from Maldives Mr. Mohamed Anwar and ... international IAIR Award for the most innovative high security ePassport and eGates  ... ... Maldives Immigration Controller General, Mr. Mohamed Anwar ... right) have received the IAIR award for the "Most innovative high security ...
(Date:3/23/2017)... , March 23, 2017 The report "Gesture Recognition and ... Industry, and Geography - Global Forecast to 2022", published by MarketsandMarkets, the market ... CAGR of 29.63% between 2017 and 2022. Continue ... ... ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... NY (PRWEB) , ... October 12, 2017 , ... ... of Sciences today announced the three Winners and six Finalists of the 2017 ... given annually by the Blavatnik Family Foundation and administered by the New York ...
(Date:10/12/2017)... ... 12, 2017 , ... AMRI, a global contract research, development ... patient outcomes and quality of life, will now be offering its impurity solutions ... new regulatory requirements for all new drug products, including the finalization of ICH ...
(Date:10/11/2017)... ... , ... Personal eye wash is a basic first aid supply for any work environment, but ... do you rinse first if a dangerous substance enters both eyes? It’s one less decision, ... its unique dual eye piece. , “Whether its dirt and debris, or an acid or ...
(Date:10/11/2017)... ROTTERDAM, the Netherlands and LAGUNA HILLS, ... that The Institute of Cancer Research, London ... will use MMprofiler™ with SKY92, SkylineDx,s prognostic tool to risk-stratify ... high-risk trial known as MUK nine . The University ... this trial, which is partly funded by Myeloma UK, and ...
Breaking Biology Technology: