Navigation Links
Collagen-seeking synthetic protein could lead doctors to tumor locations
Date:8/29/2012

Johns Hopkins researchers have created a synthetic protein that, when activated by ultraviolet light, can guide doctors to places within the body where cancer, arthritis and other serious medical disorders can be detected.

The technique could lead to a new type of diagnostic imaging technology and may someday serve as a way to move medications to parts of the body where signs of disease have been found. In a study published in the Aug. 27-31 Online Early Edition of Proceedings of the National Academy of Sciences, the researchers reported success in using the synthetic protein in mouse models to locate prostate and pancreatic cancers, as well as to detect abnormal bone growth activity associated with Marfan syndrome.

The synthetic protein developed by the Johns Hopkins team does not zero in directly on the diseased cells. Instead, it binds to nearby collagen that has been degraded by various health disorders. Collagen, the body's most abundant protein, provides structure and creates a sturdy framework upon which cells build nerves, bone and skin. Some buildup and degradation of collagen is normal, but disease cells such as cancer can send out enzymes that break down collagen at an accelerated pace. It is this excessive damage, caused by disease, that the new synthetic protein can detect, the researchers said.

"These disease cells are like burglars who break into a house and do lots of damage but who are not there when the police arrive," said S. Michael Yu, a faculty member in the Whiting School of Engineering's Department of Materials Science and Engineering. "Instead of looking for the burglars, our synthetic protein is reacting to evidence left at the scene of the crime," said Yu, who was principal investigator in the study.

A key collaborator was Martin Pomper, a School of Medicine professor of radiology and co-principal investigator of the Johns Hopkins Center of Cancer Nanotechnology Excellence. Pomper and Yu met as fellow affiliates of the Johns Hopkins Institute for NanoBioTechnology. "A major unmet medical need is for a better non-invasive characterization of disrupted collagen, which occurs in a wide variety of disorders," Pomper said. "Michael has found what could be a very elegant and practical solution, which we are converting into a suite of imaging and potential agents for diagnosis and treatment."

The synthetic proteins used in the study are called collagen mimetic peptides or CMPs. These tiny bits of protein are attracted to and physically bind to degraded strands of collagen, particularly those damaged by disease. Fluorescent tags are placed on each CMP so that it will show up when doctors scan tissue with fluorescent imaging equipment. The glowing areas indicate the location of damaged collagen that is likely to be associated with disease.

In developing the technique, the researchers faced a challenge because CMPs tend to bind with one another and form their own structures, similar to DNA, in a way that would cause them to ignore the disease-linked collagen targeted by the researchers.

To remedy this, the study's lead author, Yang Li, synthesized CMPs that possess a chemical "cage" to keep the proteins from binding with one another. Just prior to entering the bloodstream to search for damaged collagen, a powerful ultraviolet light is used to "unlock" the cage and allow the CMPs to initiate their disease-tracking mission. Li is a doctoral student from the Department of Chemistry in the Krieger School of Arts and Sciences at Johns Hopkins. Yu, who holds a joint appointment in that department, is his doctoral adviser.

Yu's team tested Li's fluorescently tagged and caged peptides by injecting them into lab mice that possessed both prostate and pancreatic human cancer cells. Through a series of fluorescent images taken over four days, researchers tracked single strands of the synthetic protein spreading throughout the tumor sites via blood vessels and binding to collagen that had been damaged by cancer.

Similar in vivo tests showed that the CMP can target bones and cartilage that contain large amounts of degraded collagen. Therefore, the new protein could be used for diagnosis and treatment related to bone and cartilage damage.

Although the process is not well understood, the breakdown and rebuilding of collagen is thought to play a role in the excessive bone growth found in patients with Marfan syndrome. Yu's team tested their CMPs on a mouse model for this disease and saw increased CMP binding in the ribs and spines of the Marfan mice, as compared to the control mice.


'/>"/>
Contact: Phil Sneiderman
prs@jhu.edu
443-287-9960
Johns Hopkins University
Source:Eurekalert  

Related biology news :

1. Synthetic Biology Scorecard finds federal agencies responding to bioethics report
2. Synthetic diamond steps closer to next generation of high performance electrochemical applications
3. UC Santa Barbara researchers develop synthetic platelets
4. New synthetic biology technique boosts microbial production of diesel fuel
5. A new look at proteins in living cells
6. Low oxygen levels may decrease life-saving protein in spinal muscular atrophy
7. Molecular and protein markers discovered for liver transplant failure from hepatitis C
8. Method to prevent rejection of disease-fighting proteins described in Human Gene Therapy journal
9. Gene network restores CF protein function
10. Protein involved in DNA replication, centrosome regulation linked to dwarfism, small brain size
11. Long-distance distress signal from periphery of injured nerve cells begins with locally made protein
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Collagen-seeking synthetic protein could lead doctors to tumor locations
(Date:8/26/2020)... ... ... Modality Solutions, a biopharmaceutical cold chain validation engineering firm, is pleased ... the most prestigious ranking of the nation’s fastest-growing private companies. Modality Solutions made the ... revenue growth of 71 percent. , The Inc. 5000 list represents a unique ...
(Date:8/21/2020)... ... 20, 2020 , ... NDA Partners Chairman Carl Peck, ... with expertise in clinical trial planning and feasibility, regulatory inspection readiness, and clinical ... his career, Mr. Movahhed has helped design and manage oncology, neurology, cardiovascular, and ...
(Date:8/5/2020)... ... , ... Regenative Labs has received approval from the Centers for Medicare & ... first Wharton’s jelly allografts to be assigned a Q code and be approved for ... Wharton’s jelly allograft product to be recognized as a 361 HCT/P by CMS regulated ...
Breaking Biology News(10 mins):
(Date:8/7/2020)... ... August 06, 2020 , ... VGXI, a highly regarded CDMO ... the purchase of greenfield for a new, expanded manufacturing facility. The site is ... in the initial acquisition, with an option to purchase an additional 21 acres ...
(Date:7/31/2020)... ... July 29, 2020 , ... G-CON Manufacturing, the leader in ... “BUILDING FOR LIFE.” The adoption of this taglines comes at a time of ... capacity to provide patients with urgently needed vaccines and other lifesaving pharmaceutical treatments. ...
(Date:7/31/2020)... ... ... eSource has long been touted as the solution to high data management and ... it did not take off as quickly as people initially expected, and where eSource ... capturing data electronically for clinical trials and then repurposing it for downstream analysis, at ...
(Date:7/18/2020)... ... , ... After research model surgery and catheter implantation, the long journey of ... beginning of a successful study, while protecting and accessing the catheter or device post-surgery ... Surgery from Envigo in a live webinar on Wednesday, August ...
Breaking Biology Technology: