Navigation Links
Cold Spring Harbor Laboratory scientists trace a novel way cells are disrupted in cancer
Date:10/6/2008

A research team at Cold Spring Harbor Laboratory (CSHL) is clarifying a previously unappreciated way that cellular processes are disrupted in cancer.

Last year, scientists from the same CHSL team discovered that a "splicing factor" called SF2/ASF--a protein that changes the instructions for how other proteins are assembled--can induce tumors in cell cultures. The team's newly published results show that, in ways not yet fully understood, this same splicing factor acts on a group of other molecules that has long been known to affect cancer.

A Cascade of Molecular Interactions Leading to Cancer

Understanding such complex molecular interactions may one day lead to new approaches to cancer treatment. Cancers are enormously complex, and eventually, in most instances, they find ways of disrupting a large fraction of cellular processes. To untangle and reverse the changes, researchers seek to identify sequences of events in which molecules each affect one another in turn, ultimately inducing cancer-cell behavior.

For example, one protein may affect another by chemically disabling it, or by slowing the gene expression that produces it from the "instructions" contained in DNA. A drug that blocks any step in such a "pathway" has a chance to slow or prevent the disease.

Until recently, however, cancer researchers have paid scant attention to factors that affect others through "alternative splicing," a mechanism that changes how DNA instructions are cut and pasted together at the level of RNA intermediaries to form final templates for the production of proteins.

"Splicing is a critical step in gene expression," said Adrian R. Krainer, Ph.D., a CSHL professor who is an expert on RNA splicing. "Like other steps in gene expression, it seems to malfunction in cancer." Last year, Krainer and his colleagues found that several known splicing factors are present at higher-than-normal levels in some tumors. For example, a factor known as SF2/ASF was elevated in more than 20% of lung and colon tumors. Moreover, laboratory cultures of mouse or rat cells developed characteristics of tumors when they were programmed to make higher-than-normal levels of this splicing factor.

Changes in the PI3K-mTOR Pathway

In the new research, Krainer's team looked for specific molecules whose concentrations or enzymatic activities changed in cells in which SF2/ASF induced cancer. They found changes in some proteins in a group known as the PI3K-mTOR pathway, which is well known for its involvement in cancers.

The team speculated that SF2/ASF, as it influences how a gene's instructions are translated into protein, might cause a protein to be assembled without a key section that is normally modified by other proteins in the pathway. Krainer cautioned that the splicing factor may act on other proteins or in other ways in the cell, so further research is needed. Nonetheless, the team's research suggests that measuring SF2/ASF levels could eventually lead to a way to identify patients who will respond to existing drugs that block the PI3K-mTOR pathway.


'/>"/>

Contact: Peter Tarr
tarr123@gmail.com
516-367-8455
Cold Spring Harbor Laboratory
Source:Eurekalert

Related biology news :

1. Springer bee expert Juergen Tautz wins prize for public communication
2. Journal of Nutrition, Health and Aging to be published by Springer
3. Springer editor Toshisada Nishida winner of 2 prestigious primatology awards
4. Cold Spring Harbor Protocols highlights gene silencing, cancer cell biology methods
5. 2 Springer authors win important awards from the Ecological Society of America
6. A field guide to the landscape of Cold Spring Harbor Laboratory
7. Watson-inspired innovation in research at Cold Spring Harbor Laboratory
8. Springer editor honored with top environmental prize
9. Cold Spring Harbor Protocols features methods for analyzing genomes and plant cells
10. Mice mothers devote energies to offspring when life is threatened
11. Cold Spring Harbor Protocols features classic approaches for analyzing chromosomes
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/23/2017)... 2017 The report "Gesture Recognition and Touchless Sensing Market ... - Global Forecast to 2022", published by MarketsandMarkets, the market is expected to ... between 2017 and 2022. Continue Reading ... ... ...
(Date:3/22/2017)... 2017 Vigilant Solutions , a vehicle ... agencies, announced today the appointment of retired FBI special ... safety business development. Mr. Sheridan brings more ... a focus on the aviation transportation sector, to his ... Mr. Sheridan served as the Aviation Liaison Agent Coordinator ...
(Date:3/13/2017)... Germany , March 13, 2017 Future of security: ... ... DERMALOGs Face Matching enables to match face ... forms the basis to identify individuals. (PRNewsFoto/Dermalog Identification Systems) ... DERMALOG,s "Face Matching" is the fastest software for biometric ...
Breaking Biology News(10 mins):
(Date:4/21/2017)... ... April 21, 2017 , ... ... to nourishing a range of emerging technology-based businesses, recently earned a $77,518 grant ... location. , Founded in 2004, FITCI is Frederick’s first incubator. A non-profit ...
(Date:4/20/2017)... BARBARA, CALIFORNIA (PRWEB) , ... April 20, 2017 , ... ... optimization firm for the life sciences and healthcare industries, is pleased to announce ... the new established USDM subsidiary “USDM Europe GmbH” based in Germany. , Braemer ...
(Date:4/20/2017)... ... April 20, 2017 , ... ... technology applications, announced today that Chief Executive Officer (CEO) Debbie Gustafson has been ... is the global industry association connecting the electronics manufacturing supply chain. The mission ...
(Date:4/20/2017)... Israel , April 20, 2017  BrainStorm Cell ... cell technologies for neurodegenerative diseases, announced today that Chaim ... for Regenerative Medicine,s (ARM) 5 th Annual Cell & ... 09:40 EDT in Boston . ... Medical Officer & Chief Operating Officer, will participate in a ...
Breaking Biology Technology: