Navigation Links
Climate change complicates plant diseases of the future
Date:6/24/2010

Human-driven changes in the earth's atmospheric composition are likely to alter plant diseases of the future. Researchers predict carbon dioxide will reach levels double those of the preindustrial era by the year 2050, complicating agriculture's need to produce enough food for a rapidly growing population.

University of Illinois researchers are studying the impact of elevated carbon dioxide, elevated ozone and higher atmospheric temperatures on plant diseases that could challenge crops in these changing conditions.

Darin Eastburn, U of I associate professor of crop sciences, evaluated the effects of elevated carbon dioxide and ozone on three economically important soybean diseases under natural field conditions at the soybean-free air-concentrating enrichment (SoyFACE) facility in Urbana.

The diseases downy mildew, Septoria brown spot, and sudden death syndrome were observed from 2005 to 2007 using visual surveys and digital image analysis. While changes in atmospheric composition altered disease expression, the responses of the three pathosystems varied considerably, Eastburn said.

Elevated carbon dioxide levels are more likely to have a direct effect on plant diseases through changes to the plant hosts rather than the plant pathogens.

"Plants growing in a high carbon dioxide environment tend to grow faster and larger, and they have denser canopies," Eastburn said. "These dense plant canopies favor the development of some diseases because the low light levels and reduced air circulation allow higher relative humidity levels to develop, and this promotes the growth and sporulation of many plant pathogens."

At the same time, plants grown in high carbon dioxide environments also close their stomata, pores in the leaves that allow the plant to take in carbon dioxide and release oxygen, more often. Because plant pathogens often enter the plant through the stomata, the more frequent closing of the stomata may help prevent some pathogens from getting into the plant.

In elevated ozone, plant growth is inhibited and results in shorter plants with less dense canopies. This can slow the growth and reproduction of certain pathogens. However, ozone also damages plant tissues that can help pathogens infect the plant more easily.

"Elevated levels of carbon dioxide and ozone can make a plant more susceptible to some diseases, but less susceptible to others," Eastburn said. "This is exactly what we've observed in our climate change experiments."

U of I's SoyFACE was the first facility to expose plants to elevated ozone under completely open-air conditions within an agricultural field.

"The SoyFACE facility allowed us to evaluate the influence of natural variability of meteorological factors such as drought and temperature in conjunction with imposed atmospheric composition (elevated carbon dioxide and ozone) on naturally occurring soybean diseases across several growing seasons," Eastburn said.

He believes rising temperatures and changes in rainfall patterns will also affect development of plant disease epidemics.

"In some cases, changes of only a few degrees have allowed plant diseases to become established earlier in the season, resulting in more severe disease epidemics," Eastburn said. "The ranges of some diseases are expanding as rising temperatures are allowing pathogens to overwinter in regions that were previously too cold for them."

For example, warmer winters may allow kudzu to expand its range northward. Because kudzu is an alternate host for the soybean rust pathogen, one result of rising temperatures may be that soybean rust arrives in Illinois earlier in the soybean growing season, Eastburn said.

"Information derived from climate change studies will help us prepare for the changes ahead by knowing which diseases are most likely to become more problematic," he said. "Now is the time for plant pathologists, plant breeders, agronomists and horticulturalists to adapt disease management strategies to the changing environment."

Eastburn's soybean research, "Elevated atmospheric carbon dioxide and ozone alter soybean diseases at SoyFACE," was recently published in Global Change Biology. Researchers also included Melissa DeGennaro and Evan DeLucia of the U of I, Orla Dermody of Pioneer Hi-Bred Switzerland, and Andrew McElrone of the University of California Davis.


'/>"/>

Contact: Jennifer Shike
jshike@illinois.edu
217-244-0888
University of Illinois College of Agricultural, Consumer and Environmental Sciences
Source:Eurekalert  

Related biology news :

1. Birds reduce their heating bills in cold climates
2. Robot submarine patrols Lake Michigan for climate-change study
3. Pumping up the heat for a climate-friendly future
4. Climate change and agriculture: Food and farming in a changing climate
5. Amount of dust, pollen matters for cloud precipitation, climate change
6. Warmer climate makes Baltic more salty
7. How New York City is preparing for climate change
8. Study finds reforestation may lower the climate change mitigation potential of forests
9. Beyond polar bears? Experts look for a new vision of climate change to combat skepticism
10. Scientists: Malaria control to overcome disease’s spread as climate warms
11. New climate change reports underscore need for action
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Climate change complicates plant diseases of the future
(Date:3/29/2016)... , March 29, 2016 LegacyXChange, ... LegacyXChange "LEGX" and SelectaDNA/CSI Protect are pleased to announce ... used in a variety of writing instruments, ensuring athletes ... originally created collectibles from athletes on LegacyXChange will be ... of the DNA. Bill Bollander , ...
(Date:3/22/2016)... PROVO and SANDY, Utah ... Ontario (NSO), which operates the highest sample volume laboratory ... and Tute Genomics and UNIConnect, leaders in clinical sequencing ... announced the launch of a project to establish the ... panel. NSO has been contracted by ...
(Date:3/17/2016)... ABI Research, the leader in transformative ... market will reach more than $30 billion by ... Consumer electronics, particularly smartphones, continue to boost the ... reach two billion shipments by 2021 at a ... Research Analyst at ABI Research. "Surveillance is also ...
Breaking Biology News(10 mins):
(Date:4/28/2016)... -- The report "Cryocooler Market by Type ... Support, Product Repairs & Refurbishment, Preventive Maintenance, and Customer ... published by MarketsandMarkets, the global market is expected to ... CAGR of 7.29% between 2016 and 2022. ... spread through 159 Pages and in-depth TOC on  "Cryocooler ...
(Date:4/28/2016)... ... 28, 2016 , ... Morris Midwest ( http://www.morrismidwest.com ), a ... at its Maple Grove, Minnesota technical center, May 11-12. The event will ... Almost 20 leading suppliers of tooling, accessories, software and other related technology will ...
(Date:4/27/2016)... , April 27, 2016 ... NSK) (OTCPink: NSKQB) ( Frankfurt : ... ihre Pressemitteilung vom 13. August 2015 die Genehmigung ... Finanzen um zusätzliche 200.000.000 Einheiten auf 400.000.000 Einheiten ... zu bringen. Davon wurden 157.900.000 Einheiten mit dem ...
(Date:4/27/2016)... Winnipeg, Manitoba (PRWEB) , ... April 27, 2016 ... ... commercially released for simultaneous preclinical PET (Positron Emission Tomography) and MRI (Magnetic Resonance ... for better understanding disease and testing novel treatments in small animal subjects. Simultaneous ...
Breaking Biology Technology: