Navigation Links
Climate change clues from tiny marine algae -- ancient and modern
Date:2/4/2013

Microscopic ocean algae called coccolithophores are providing clues about the impact of climate change both now and many millions of years ago. The study found that their response to environmental change varies between species, in terms of how quickly they grow.

Coccolithophores, a type of plankton, are not only widespread in the modern ocean but they are also prolific in the fossil record because their tiny calcium carbonate shells are preserved on the seafloor after death the vast chalk cliffs of Dover, for example, are almost entirely made of fossilised coccolithophores.

The fate of coccolithophores under changing environmental conditions is of interest because of their important role in the marine ecosystem and carbon cycle. Because of their calcite shells, these organisms are potentially sensitive to ocean acidification, which occurs when rising atmospheric carbon dioxide (CO2) is absorbed by the ocean, increasing its acidity.

There are many different species of coccolithophore and in an article, published in Nature Geoscience this week, the scientists report that they responded in different ways to a rapid climate warming event that occurred 56 million years ago, the Palaeocene-Eocene Thermal Maximum (PETM).

The study, involving researchers from the University of Southampton, the National Oceanography Centre and University College London, found that the species Toweius pertusus continued to reproduce relatively quickly despite rapidly changing environmental conditions. This would have provided a competitive advantage and is perhaps why closely-related modern-day species considered to be its descendants, (such as Emiliana huxleyi) still thrive today.

In contrast, the species Coccolithus pelagicus grew more slowly during the period of greatest warmth and this inability to maintain high growth rates may explain why its descendants are less abundant and less widespread in the modern ocean.

"This work provides us with a whole new way of looking at living and fossil coccolithophores," said lead author Dr Samantha Gibbs, Senior Research Fellow at University of Southampton Ocean and Earth Science.

By comparing immaculately preserved and complete fossil cells with modern coccolithophore cells, the researchers could interpret how different species responded to the sudden increase in environmental change at the PETM, when atmospheric CO2 levels increased rapidly and the oceans became more acidic.

"We use knowledge of how coccolithophores build their calcite skeletons in the modern ocean to interpret how climate change 56 million years ago affected the growth of these microscopic plankton," said co-author Dr Alex Poulton, a Research Fellow at the National Oceanography Centre.

"This is a significant step forward and allows us to view fossils as cells rather than dead 'rocks'. Through this we can begin to understand the environmental controls on oceanic calcification, as well as the potential effects of climate change and ocean acidification."


'/>"/>

Contact: Catherine Beswick
catherine.beswick@noc.ac.uk
National Oceanography Centre, Southampton (UK)
Source:Eurekalert  

Related biology news :

1. New study will predict how trees will adapt to rapid climate change
2. Climate change projected to alter Indiana bat maternity range
3. Analysis of Greenland ice cores adds to historical record and provide glimpse into climates future
4. Parasites of Madagascars lemurs expanding with climate change
5. Climate changes effects on temperate rain forests surprisingly complex
6. Climate change to profoundly affect the Midwest in coming decades
7. In the Eastern US, spring flowers keep pace with warming climate
8. International study: Where theres smoke or smog, theres climate change
9. Will changes in climate wipe out mammals in Arctic and sub-Arctic areas?
10. 2 climate scientists win 2012 Vetlesen Prize for work on ozone hole, ice cores
11. Mathematics and weather and climate research
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Climate change clues from tiny marine algae -- ancient and modern
(Date:2/4/2016)... Feb. 4, 2016 The field of ... of the most popular hubs of the biotechnology ... other huge studies of human microbiota, have garnered ... years, the microbiome space has literally exploded in ... This report focuses on biomedical aspects of ...
(Date:2/3/2016)... 2016 http://www.researchandmarkets.com/research/d8zjcd/emotion_detection ... "Emotion Detection and Recognition Market by ... Software Tools (Facial Expression, Voice Recognition and ... - Global forecast to 2020" report ... http://www.researchandmarkets.com/research/d8zjcd/emotion_detection ) has announced the addition of ...
(Date:2/2/2016)... , Feb. 2, 2016 Technology Enhancements Accelerate ... an analysis of the digital and computed radiography markets ... , and Indonesia (TIM). ... and market size, as well as regional market drivers ... and discusses market penetration and market attractiveness, both for ...
Breaking Biology News(10 mins):
(Date:2/10/2016)... ... 09, 2016 , ... Creation Technologies, leading global provider of ... Customer Rating Award from Circuits Assembly , today announced its milestone achievement of ... Mexico and China. , The EMS provider, known in the EMS industry for ...
(Date:2/9/2016)... , Feb. 9, 2016  Regenicin, Inc. ... company specializing in the development and commercialization of ... damaged tissues and organs, recently reported the Company,s ... first quarter of 2016. Lonza America ... new 2015 fiscal year in the process of ...
(Date:2/9/2016)... ... February 08, 2016 , ... ... services, announced today the launch of its revamped and improved website. In an ... service solutions, the redesigned website will better communicate how the company designs and ...
(Date:2/9/2016)... ... February 09, 2016 , ... Tunnell Consulting, Inc. announced that ... Paris, he will focus on acquiring new accounts and work closely with existing Tunnell ... , “Fred brings to our European clients more than 15 years of experience in ...
Breaking Biology Technology: