Navigation Links
Clemson scientists shed light on molecules in living cells
Date:8/20/2007

CLEMSON, S.C. Clemson University chemists have developed a method to dramatically improve the longevity of fluorescent nanoparticles that may someday help researchers track the motion of a single molecule as it travels through a living cell.

The chemists are exploiting a process called resonance energy transfer, which occurs when fluorescent dye molecules are added to the nanoparticles. Their findings will be reported at the 234th annual national American Chemical Society meeting Aug.19-24 in Boston.

If scientists could track the motion of a single molecule within a living cell it could reveal a world of information. Among other things, scientists could determine how viruses invade a cell or how proteins operate in the body. Such technology also could help doctors pinpoint the exact location of cancer cells in order to better focus treatment and minimize damage to healthy tissue. Outside the body, the technology could help speed up detection of such toxins as anthrax.

The key to developing single-molecule tracking technology may be the development of better fluorescent nanoparticles.

Fluorescent nanoparticles are thousands of times smaller than the width of a human hair and are similar in size to protein molecules, to which they can be attached. When illuminated by a laser beam inside a light microscope equipped with a sensitive digital camera, the nanoparticle attached to a protein will light up, allowing scientists to get a precise fix on the position of the protein and monitor its motion inside a cell.

Until now, nanoparticles have been too dim to detect inside cells, but Clemson chemists have developed a novel type of nanoparticles containing materials called conjugated polymers that light up and stay lit long enough for scientists to string together thousands of images, as in a movie.

Conjugated polymers share many properties with semiconductors like silicon but have the flexibility of plastic. While initial efforts at preparing nanoparticles out of conjugated polymers resulted in particles that were very bright, their brightness quickly faded under the bright glare of a laser beam.

When a conjugated polymer is in a high energy state, it is vulnerable to attack by oxygen, says principal investigator and chemist Jason McNeill. The dye efficiently removes the energy from the molecule and re-emits the energy as light, which greatly improves the brightness and longevity of the nanoparticles.

McNeill says other possible targets of investigation include the formation of plaques and fibrils in the brain associated with Alzheimer's disease and mad cow disease. Graduate students Changfeng Wu, Craig Szymanski, Jennifer Grimland and Yueli Zheng contributed to the study, which the National Science Foundation funded.

Clemson University chemists are presenting 40 papers on a wide range of subjects at the society meeting. Other topics include detection and quantification of uranium in groundwater, conversion of lipid feedstocks such as poultry fat to biodiesel and a new mechanism for antioxidants that fight DNA damage.


'/>"/>

Contact: Susan Polowczuk
spolowc@clemson.edu
864-656-2063
Clemson University
Source:Eurekalert

Related biology news :

1. Wisconsin scientists grow critical nerve cells
2. Scientists ID molecular switch in liver that triggers harmful effects of saturated and trans fats
3. UCSB scientists probe sea floor venting to gain understanding of early life on Earth
4. UAB scientists discover the origin of a mysterious physical force
5. Fox Chase Cancer Center scientists identify immune-system mutation
6. Scientists Replicate Hepatitis C Virus in Laboratory
7. Scientists detect probable genetic cause of some Parkinsons disease cases
8. Scientists find missing enzyme for tuberculosis iron scavenging pathway
9. Scientists seek answers on what activates deadly anthrax spores
10. Yale Scientists Find MicroRNA Regulates Ras Cancer Gene
11. Scientists collaborate to assess health of global environment
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/15/2016)... 15, 2016 Research and ... Biometrics Market 2016-2020,"  report to their offering.  , ... , ,The global gait biometrics market is expected ... the period 2016-2020. Gait analysis generates ... be used to compute factors that are not ...
(Date:4/13/2016)...  IMPOWER physicians supporting Medicaid patients in ... standard in telehealth thanks to a new partnership with ... IMPOWER patients can routinely track key health measurements, such ... and, when they opt in, share them with IMPOWER ... local retail location at no cost. By leveraging this ...
(Date:3/31/2016)... -- Genomics firm Nabsys has completed a financial  restructuring under ... M.D., who returned to the company in October 2015. ... including Chief Technology Officer, John Oliver , Ph.D., ... Vice President of Software and Informatics, Michael Kaiser ... Bready served as CEO of Nabsys from 2005-2014 and ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... 2016 Apellis Pharmaceuticals, Inc. today announced ... of its complement C3 inhibitor, APL-2. The trials ... dose studies designed to assess the safety, tolerability, ... in healthy adult volunteers. Forty subjects ... single dose (ranging from 45 to 1,440mg) or ...
(Date:6/23/2016)... , June 23, 2016 On ... session at 4,833.32, down 0.22%; the Dow Jones Industrial Average ... 500 closed at 2,085.45, down 0.17%. Stock-Callers.com has initiated coverage ... INFI ), Nektar Therapeutics (NASDAQ: NKTR ), Aralez ... Inc. (NASDAQ: BIND ). Learn more about these ...
(Date:6/23/2016)... ... June 23, 2016 , ... Velocity Products, a division of ... and optimized exclusively for Okuma CNC machining centers at The International Manufacturing Technology ... among several companies with expertise in toolholding, cutting tools, machining dynamics and distribution, ...
(Date:6/22/2016)... June 22, 2016 Cell Applications, Inc. ... them to produce up to one billion human ... within one week. These high-quality, consistent stem cells ... cells and spend more time doing meaningful, relevant ... proprietary, high-volume manufacturing process that produces affordable, reliable ...
Breaking Biology Technology: