Navigation Links
Clemson bioengineer uses nanoparticles to target drugs
Date:10/8/2009

CLEMSON Clemson bioengineer Frank Alexis is designing new ways to target drugs and reduce the chances for side effects.

Pharmaceutical commercials can cause the unsettling feeling that if the disease doesn't kill, the cure will, what with a drug's long list of side effects and warnings. Many therapeutic drugs administered by pill, cream, syringe, IV or liquid can be a hit or miss delivery system.

Researchers report that only 1 of 100,000 molecules of an intravenous drug make it to the intended spot in the body.

"The big issues for making medicines more effective are getting drugs to where they are needed and keeping them from breaking down as they circulate through the body," said Alexis. "A way to improve targeting a drug and preventing it from be passed out of the body is putting it in envelopes putting the drug inside something to protect it until it's at the right spot."

The envelopes Alexis uses are nanoparticles. Think of an M&M, with the nanoparticle being the hard outer candy shell and the chocolate being the medicine. The goal would be the same as for an M&M to melt in the right place.

Nanotechnology operates on the molecular level. It involves engineering materials on such a small scale that the results can be seen only with electron and atomic force microscopes. Nano-engineers take advantage of natural forces positive and negative electrical charges, attraction and repulsion, surface texture to have materials self assemble.

"You would be surprised how we mimic what nature does," said Alexis. It is setting off a storm of innovations in many fields biology, medicine, material science, computers, manufacturing, physics.

"Nanoparticles can be modified many ways," said Alexis. "They can be coated so that they can be durable and stable. They can be patterned so that they match up like a key and a lock to connect to certain cells, tissues and organs. Some drugs are not taken up because of their physical and chemical properties."

A handful of nanoparticle medicines already have been approved for use treating diseases, particularly cancers. Alexis and other bioengineers are ushering in a new era in medicine.

A challenge for oral medicines, for example, is getting them to do some good before the body destroys them. A patient's metabolism can do its job too well taking a drug out of circulation.

Called "first-pass metabolism," the liver breaks down a drug during its first trip circulating through the body. The result is doctors must use greater amounts of oral medicines to achieve the therapeutic effect. Negative reactions from the higher doses or the inconvenience from prolonged treatment cause many patients to stop taking their medicines.

Nanoparticles can be made to survive the first pass. The particles also can be made to get beyond the body's immune system. Multi-layers on the nanoparticles or nanoshells can resist the body's defenses, enabling the medicine to last longer or reach the intended location.

Dendrimers are nanoparticles that could become the Swiss Army knives of targeted drug delivery. The particles can be made so that a number of different kinds of molecules could be attached to it. One group of molecules could fight the disease, another could enhance images to track the drug, a third could carry a chemical trigger to release the medicine by command from outside the body, another, still, that could send signals about results.

"We are moving ahead in nanoscience in laboratories throughout the world," said Alexis. "Nanoparticle functionalities become more and more complex and the next step is for the research to develop technologies allowing their transfer from the research bench to a pharmaceutical drug. New ways of targeting drugs that will be more effective and safe and more agreeable to patients is just over the horizon."


'/>"/>

Contact: Peter Kent
pkent@clemson.edu
864-656-4355
Clemson University
Source:Eurekalert

Related biology news :

1. Clemson researchers study energy savings with electric cars and IntelliDrive technology
2. Clemson research nets $2 million from NSF to mimic natures probes
3. Clemson and collaborators receive $1.1 million to improve durability of concrete infrastructure
4. Clemson chemists present revolutionary teaching concepts
5. Clemson physicist Apparao Rao named Fellow of the American Physical Society
6. Clemson researchers advance nano-scale electromechanical sensors
7. US Senate confirms Clemson University engineering Dean Esin Gulari to National Science Board
8. National Science Foundation grants Clemson professors award to develop nanoprobes
9. NIH awards Clemson bioengineer $1.5 million to improve durability of tissue heart valves
10. Clemson bioengineer wins prestigious Early Career Award
11. NIH recognizes Clemson nanotechnology for molecule tracking
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/13/2017)... April 13, 2017 UBM,s Advanced Design and ... will feature emerging and evolving technology through its 3D ... will run alongside the expo portion of the event ... and demonstrations focused on trending topics within 3D printing ... and manufacturing event will take place June 13-15, 2017 at ...
(Date:4/11/2017)... 2017 No two people are believed ... New York University Tandon School of Engineering and ... that partial similarities between prints are common enough ... phones and other electronic devices can be more ... lies in the fact that fingerprint-based authentication systems ...
(Date:4/5/2017)... -- Today HYPR Corp. , leading innovator in ... the HYPR platform is officially FIDO® Certified . ... that empowers biometric authentication across Fortune 500 enterprises and ... 15 million users across the financial services industry, however ... suites and physical access represent a growing portion of ...
Breaking Biology News(10 mins):
(Date:5/23/2017)... Massachusetts (PRWEB) , ... May 23, 2017 , ... ... making a splash at this year’s Bio-IT World Conference and Expo in ... Smart Data Lake® 4.0 solution. The Anzo Smart Data Lake is also a ...
(Date:5/22/2017)... Maryland (PRWEB) , ... May 22, 2017 , ... ... Olsen, joined with other leaders of the Maryland Biohealth community in developing and ... globally recognized Top 3 U.S. BioHealth Innovation Hub by 2023. ...
(Date:5/21/2017)... ... 20, 2017 , ... CNSDose is a genetically driven, clinically ... by finding the right antidepressant faster. CNSDose speeds recovery and reduces side ... personalized approach to treatment. , A peer-reviewed and published, 12-week double-blind ...
(Date:5/18/2017)... Mass. (PRWEB) , ... May 18, 2017 , ... ... the procedure on April 28, 2017 at the Prince Of Wales Private Hospital. ... cervical disc at level C6-C7. The patient failed conservative treatments prior to undergoing ...
Breaking Biology Technology: