Navigation Links
Clay key to high-temperature supercapacitors

HOUSTON (Sept. 3, 2013) Clay, an abundant and cheap natural material, is a key ingredient in a supercapacitor that can operate at very high temperatures, according to Rice University researchers who have developed such a device.

The Rice group of materials scientist Pulickel Ajayan reported today in Nature's online journal, Scientific Reports that the supercapacitor is reliable at temperatures of up to 200 degrees Celsius (392 degrees Fahrenheit) and possibly beyond. It could be useful for powering devices for use in extreme environments, such as oil drilling, the military and space.

"Our intention is to completely move away from conventional liquid or gel-type electrolytes, which have been limited to low-temperature operation of electrochemical devices," said Arava Leela Mohana Reddy, lead author and a former research scientist at Rice.

"We found that a clay-based membrane electrolyte is a game-changing breakthrough that overcomes one of the key limitations of high-temperature operation of electrochemical energy devices," Reddy said. "By allowing safe operation over a wide range of temperatures without compromising on high energy, power and cycle life, we believe we can dramatically enhance or even eliminate the need for expensive thermal management systems."

A supercapacitor combines the best qualities of capacitors that charge in seconds and discharge energy in a burst and rechargeable batteries that charge slowly but release energy on demand over time. The ideal supercapacitor would charge quickly, store energy and release it as needed.

"Researchers have been trying for years to make energy storage devices like batteries and supercapacitors that work reliably in high-temperature environments, but this has been challenging, given the traditional materials used to build these devices," Ajayan said.

In particular, researchers have struggled to find an electrolyte, which conducts ions between a battery's electrodes, that won't break down when the heat is on. Another issue has been finding a separator that won't shrink at high temperatures and lead to short circuits. (The separator keeps the electrolyte on the anode and cathode sides of a traditional battery apart while allowing ions to pass through).

"Our innovation has been to identify an unconventional electrolyte/separator system that remains stable at high temperatures," Ajayan said.

The Rice researchers led by Reddy and Rachel Borges solved both problems at once. First, they investigated using room-temperature ionic liquids (RTILs) developed in 2009 by European and Australian researchers. RTILs show low conductivity at room temperature but become less viscous and more conductive when heated.

Clay has high thermal stability, high sorption capacity, a large active surface area and high permeability, Reddy said, and is commonly used in muds for oil drilling, in modern construction, in medical applications and as a binder by iron and steel foundries.

After combining equal amounts of RTIL and naturally occurring Bentonite clay into a composite paste, the researchers sandwiched it between layers of reduced graphene oxide and two current collectors to form a supercapacitor. Tests and subsequent electron microscope images of the device showed no change in the materials after heating it to 200 degrees Celsius. In fact, Reddy said, there was very little change in the material up to 300 degrees Celsius.

"The ionic conductivity increases almost linearly until the material reaches 180 degrees, and then saturates at 200," he said.

Despite a slight drop in capacity observed in the initial charge/discharge cycles, the supercapacitors were stable through 10,000 test cycles. Both energy and power density improved by two orders of magnitude as the operating temperature increased from room temperature to 200 degrees Celsius, the researchers found.

The team took its discovery a step further and combined the RTIL/clay with a small amount of thermoplastic polyurethane to form a membrane sheet that can be cut into various shapes and sizes, which allows design flexibility for devices.


Contact: Mike Williams
Rice University

Post Your Comments:
(Date:11/17/2015)... Nov. 17, 2015  Vigilant Solutions announces today that ... Board of Directors. --> ... retiring from the partnership at TPG Capital, one of ... over $140 Billion in revenue.  He founded and led ... the TPG companies, from 1997 to 2013.  In his ...
(Date:11/16/2015)... , Nov 16, 2015  Synaptics Inc. ... human interface solutions, today announced expansion of its ... ™ touch controller and display driver integration ... of smartphones. These new TDDI products add to ... (HD resolution), TD4302 (WQHD resolution), and TD4322 (FHD ...
(Date:11/12/2015)... 2015  Arxspan has entered into an agreement ... for use of its ArxLab cloud-based suite of ... partnership will support the institute,s efforts to electronically ... information internally and with external collaborators. The ArxLab ... the Institute,s electronic laboratory notebook, compound and assay ...
Breaking Biology News(10 mins):
(Date:12/1/2015)... Texas (PRWEB) , ... December ... ... , a leading relationship marketing company specializing in scientifically backed, age-defying products, ... January 2016 issue, which highlights the exponential success and unrivaled opportunities that ...
(Date:12/1/2015)... (PRWEB) , ... December 01, 2015 , ... ... global meeting this month and Dr. J. Kyle Mathews will join ... includes the new single site hysterectomy. , An experienced urogynecologist, founder of Plano ...
(Date:11/30/2015)... ... ... Global Stem Cells Group announced that its scientific team is in the ... cells. The announcement starts a new phase toward launching the simple, quick system for ... lipoaspirate obtained from liposuction of excess adipose tissue. , Lipoaspirate, contains a large ...
(Date:11/30/2015)... MONTREAL , Dec. 1, 2015 /PRNewswire/ - BioAmber Inc. (NYSE: ... that it has joined the American Business Act on Climate ... economy that are standing with the Obama Administration to demonstrate ... for a strong outcome to the COP21 Paris ... . --> Sarnia, Canada . ...
Breaking Biology Technology: