Navigation Links
Cilia use different motors for different tasks

PROVIDENCE, R.I. [Brown University] Cilia are one of nature's great multipurpose tools. The tiny, hair-like fibers protrude from cell membranes and perform all kinds of tasks in all kinds of creatures, from helping clear debris from human lungs to enabling single-celled organisms to swim. Now, physicists from Brown University have discovered something that could help scientists understand how cilia have been adapted for so many varied tasks.

The study, led by graduate student Ilyong Jung, looked at the cilia of the single-celled, water-dwelling paramecium. Paramecia are covered with cilia that beat like thousands of tiny oars, propelling the creatures through the water. At the same time, cilia around the paramecium's "oral groove" sweep nutrients inward, providing all-important nourishment. Through a series of experiments, the researchers showed that oral groove cilia appear to have different molecular motors than the rest of a paramecium's cilia.

This is the first time anyone has shown two motor behaviors by cilia in a single cell, says James Valles, chair of the Department of Physics at Brown and one of the paper's senior authors. With a bit more study, Valles hopes this finding could shed light on the molecular mechanisms responsible for these two motor behaviors.

"These motors are behaving differently in these two places in the same cell," Valles said. "We're hoping now that we can start pulling the two apart, maybe we can figure out what gives rise to these differences in behaviors. That could help us see why cilia can be so ubiquitous."

The findings are published in the Jan. 7, 2014, issue of the Biophysical Journal.

The researchers probed the behavior of the cilia by manipulating the viscosity of the liquid in which the paramecia swam. Using powerful microscopes and high-speed cameras, they observed how cilia behaved at a variety of viscosities, starting with the viscosity of plain water and increasing as much as seven-fold.

They found that as viscosity increased, the cilia used for swimming slowed. Doubling the viscosity slowed the movement of cilia by about half. But that wasn't true for the oral groove cilia; they barely slowed at all when the viscosity changed. At seven times the viscosity of water, the oral groove cilia slowed by only about 20 percent.

Morphologically, the two sets of cilia appear to be basically identical. That means the differences in their motion must come from the motors that drive them, the researchers say. Now that they have isolated two different motor behaviors in the same organism, researchers might be able to look at what factors drive those differences.

"Now we have these two motors in the same cell that we can contrast," Valles said. "Do they have different molecules available to them or different concentrations of molecules that drive their movement? Those are the kinds of questions we're looking at."

Those questions will take a bit more study. To help out, the physicists have enlisted the help of Brown biologist Anita Zimmerman. "We're hoping to learn how to hold on to paramecia so that we can watch them more carefully under different treatments with different chemicals or flow patterns," Valles said.

This most recent study has helped lay the groundwork for that future work, which could help explain how these tiny fibers came to be so adaptable.

"Biologists refer to [cilia] as a 'highly conserved organelle' because they turn up in so many different organisms and they do this widely varying stuff," Valles said. "We're hoping this might lift the lid a little and help us understand how they do it."

The research was supported by the National Science Foundation. Thomas Powers, professor of physics and engineering, was an author on the paper along with Jung and Valles.


Contact: Kevin Stacey
Brown University

Related biology news :

1. FASEB SRC announces conference registration open for: Biology of Cilia and Flagella
2. FASEB SRC announces conference registration open for: Ciliate Molecular Biology
3. Cilia guide neuronal migration in developing brain
4. UCLA life scientists, colleagues differentiate microbial good and evil
5. Are sweetpotato weevils differentially attracted to certain colors?
6. Genetically identical bacteria can behave in radically different ways
7. Slower-paced meal reduces hunger but affects calorie consumption differently
8. Be different or die does not drive evolution
9. Muscle-invasive and non-muscle invasive bladder cancers arise from different stem cells
10. Potassium current density increased sharply after 2 weeks of NSCs neural differentiation
11. Different gene expression in male and female brains may help explain sex differences in brain disorder
Post Your Comments:
Related Image:
Cilia use different motors for different tasks
(Date:4/28/2016)... 28, 2016 First quarter 2016:   ... compared with the first quarter of 2015 The gross ... M (loss: 18.8) and the operating margin was 40% (-13) ... Cash flow from operations was SEK 249.9 M (21.2) , ... is unchanged, SEK 7,000-8,500 M. The operating margin for ...
(Date:4/15/2016)... , April 15, 2016 ... the,  "Global Gait Biometrics Market 2016-2020,"  report to ... ) , ,The global gait biometrics ... of 13.98% during the period 2016-2020. ... angles, which can be used to compute factors ...
(Date:3/29/2016)... 29, 2016 LegacyXChange, Inc. (OTC: ... and SelectaDNA/CSI Protect are pleased to announce our successful ... a variety of writing instruments, ensuring athletes signatures against ... collectibles from athletes on LegacyXChange will be assured of ... DNA. Bill Bollander , CEO states, ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... Calif. , June 23, 2016  Blueprint Bio, ... biological discoveries to the medical community, has closed its ... Matthew Nunez . "We have received ... with the capital we need to meet our current ... essentially provide us the runway to complete validation on ...
(Date:6/23/2016)... ... June 23, 2016 , ... ClinCapture, the only ... Center and will showcase its product’s latest features from June 26 to June ... scientific poster on Disrupting Clinical Trials in The Cloud during the conference. ...
(Date:6/23/2016)... -- Amgen (NASDAQ: AMGN ) today announced a ... sciences incubator to accelerate the development of new therapies ... QB3@953 was created to help high-potential life science and ... stage organizations - access to laboratory infrastructure. ... "Amgen Golden Ticket" awards, providing each winner with one ...
(Date:6/22/2016)... , June 22, 2016 Research and ... Global Markets" report to their offering. ... billion in 2014 from $29.3 billion in 2013. The market is ... of 13.8% from 2015 to 2020, increasing from $50.6 billion in ... projected product forecasts during the forecast period (2015 to 2020) are ...
Breaking Biology Technology: