Navigation Links
Cholesterol rafts deliver drugs inside cancer cells
Date:4/2/2013

DNA, siRNA and miRNA can reprogram cancer cells that is, if these nucleic acids could cross through the cell membrane. A University of Colorado Cancer Center study published today in the journal Therapeutic Delivery shows that cholesterol "rafts" can shepherd genetic payloads into cancer cells.

"There are many promising therapeutic applications for nucleic acids, but because they can't diffuse across cell membranes on their own, delivery to cancer cells has been a major challenge. Our method is a promising way to get these drugs inside cancer cells where they can do their work," says Tom Anchordoquy, PhD, investigator at the CU Cancer Center and professor at the Skaggs School of Pharmacy and Pharmaceutical Sciences.

The technology works by exploiting a relatively new understanding of what cell membranes look like.

"It used to be that we thought about membrane proteins floating around in a disorganized two-dimensional soup. Now we know that different functions are clustered into domains we call rafts," Anchordoquy says. Imagine these rafts like continents of the Earth, each presenting its own plant species. Perhaps a raft with palm trees but not spruce unlocks passage into a cancer cell?

Anchordoquy and colleagues aren't the first to imagine particle-payload delivery systems, but when you engineer and introduce a non-rafted particle into the blood, it quickly becomes coated with all sorts of blood proteins that can cover the membrane proteins ("palm trees") needed to unlock passage into cancer cells. However, blood proteins don't bind to rafts and so particles with rafts continue to present the engineered bits rather than being silted over by the body's proteins. Anchordoquy and colleagues make these rafts by boosting the concentration of cholesterol while forming particles for drug delivery.

"See, rafts are made of 30-50 percent cholesterol, about five times the level in the surrounding lipid. We'd shown in earlier experiments that rafts create more delivery of payload materials into cancer cells, but there was always the outside chance that the benefit was due simply to higher levels of cholesterol and not to the action of the rafts, themselves," Anchordoquy says.

The current study found an elegant fix: with longer tails on lipid molecules, particles will form rafts at lower cholesterol concentrations. The team used long-tailed lipids to form their particles, allowing them to keep cholesterol concentration low while showing the same benefit in delivering genes into cancer cells. This demonstrates that it is indeed the raft that facilitates delivery.

"We've used these synthetic rafts to deliver a gene inside these cells that makes the cells fluoresce," Anchordoquy says. "That way we can see how much payload went in. But because we're talking particles and not just individual molecules, in the future we can send other cargo like microRNA's that can reprogram a cell's gene expression."

Anchordoquy is working with colleagues at the CU Cancer Center to match his delivery system with a potent payload, and welcomes collaboration outside the center as well.


'/>"/>
Contact: Garth Sundem
garth.sundem@ucdenver.edu
University of Colorado Denver
Source:Eurekalert

Related biology news :

1. Researchers find alternative cholesterol-lowering drug for patients who cant tolerate statins
2. Study identifies liver gene that regulates cholesterol and fat blood levels
3. Cholesterol helps regulate key signaling proteins in the cell
4. Host cholesterol secretion likely to influence gut microbiota
5. Vitamin D supplements do not improve cholesterol as previous research suggested
6. Zebrafish research shows how dietary fat regulates cholesterol absorption
7. Some HDL, or good cholesterol, may not protect against heart disease
8. Study finds cancer-fighting goodness in cholesterol
9. Life span of ovarian grafts longer than expected
10. Drug delivery strategy eliminates myotonia symptoms in mice with myotonic dystrophy
11. Centre for Carbon Measurement set to deliver large carbon reductions
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/16/2017)... , May 16, 2017   Bridge ... health organizations, and MD EMR Systems , ... development partner for GE, have established a partnership ... Portal product and the GE Centricity™ products, including ... EMR. These new integrations will ...
(Date:4/17/2017)... -- NXT-ID, Inc. (NASDAQ: NXTD ) ("NXT-ID" or ... 2016 Annual Report on Form 10-K on Thursday April 13, 2017 ... ... Investor Relations section of the Company,s website at http://www.nxt-id.com  under ... http://www.sec.gov . 2016 Year Highlights: ...
(Date:4/11/2017)... BROOKLYN, N.Y. , April 11, 2017 /PRNewswire-USNewswire/ ... identical fingerprints, but researchers at the New York ... University College of Engineering have found that partial ... fingerprint-based security systems used in mobile phones and ... previously thought. The vulnerability lies in ...
Breaking Biology News(10 mins):
(Date:10/10/2017)... (PRWEB) , ... October 10, ... ... development-stage cancer-focused pharmaceutical company advancing targeted antibody-drug conjugate (ADC) therapeutics, today confirmed ... targeted HPLN (Hybrid Polymerized Liposomal Nanoparticle), a technology developed in collaboration with ...
(Date:10/10/2017)... (PRWEB) , ... October 10, 2017 , ... Dr. Bob ... at his local San Diego Rotary Club. The event entitled “Stem ... CA and had 300+ attendees. Dr. Harman, DVM, MPVM was joined by two ...
(Date:10/10/2017)... , Oct. 10, 2017 SomaGenics announced the ... NIH to develop RealSeq®-SC (Single Cell), expected to be ... small RNAs (including microRNAs) from single cells using NGS ... the need to accelerate development of approaches to analyze ... "New techniques for measuring levels of mRNAs ...
(Date:10/10/2017)... (PRWEB) , ... October 10, 2017 , ... ... recipients of 13 prestigious awards honoring scientists who have made ... in a scheduled symposium during Pittcon 2018, the world’s leading conference and exposition ...
Breaking Biology Technology: