Navigation Links
Chloride channels render nerve cells more excitable
Date:4/21/2010

Nerve cells communicate with each other by means of electrical impulses. To create such an impulse, the cells exchange charged ions with their environment. However, the role played by the ever-present chloride channels remained obscure, although some theories predicted a relation between the chloride channel ClC-2 and epilepsy. Scientists at the Max Planck Institute of Neurobiology in Martinsried were now able to confirm a number of assumptions about the ClC-2 channel and could at last explain why the anticipated epileptic seizures do not occur when nerve cells lack the ClC-2 channels in mice. The results also provide a completely new understanding of how nerve cells may actively influence the exchange of information. (The Journal of Neuroscience online publication 01 April 2010)

The cell membranes of nerve cells, like those of all other cell types in the body, are perforated by so-called chloride channels. These permit the exchange of negatively charged chloride ions between the cell and its environment. Yet scientists could so far only speculate about the purpose of this exchange. According to one very prevalent theory, the excitability of nerve cells decreases when they lose chloride ions through these channels. Or, to put it the other way round, the lack of chloride channels would cause nerve cells to become overexcited. This in turn should lead to an increased rate of epileptic seizures. However, mice whose nerve cells lack chloride channels due to a genetic mutation were found no more susceptible to epilepsy than healthy animals. And so the function of the ClC-2 and of other chloride channels remained obscure.

Scientists at the Max Planck Institute of Neurobiology have now tracked down a number of the ClC-2 channel's functions. This constitutes the first tangible proof of the circumstances under which chloride ions can escape from nerve cells through the ClC-2 channels. In the case that nerve cells were lacking the ClC-2 channels due to a mutation in the channel's gene, the concentration of chloride inside the cells did indeed increase considerably.

The Max Planck scientists were also the first to successfully prove the third hypothesis that the nerve cells of mice with a genetic ClC-2 deficiency were much easier to excite than nerve cells in a healthy brain. Earlier assumptions therefore turned out to be correct. Then why did animals lacking the ClC-2 channels show no sign of epilepsy?

The answer to this question was not only plausible, but also straightforward. In addition to having cells that transmit information to their neighbouring cells, the nervous system contains a second group of nerve cells. These cells inhibit the exchange of information between its neighbours. In animals with a ClC-2 genetic defect, these inhibitory nerve cells also forfeit their chloride channels, and therefore become more excitable. Thus, excitatory and inhibitory cells become more excitable. "Although the whole system becomes more sensitive, at the end of the day the balance between the cells is maintained", explains Valentin Stein, leader of the study. And so the anticipated connection between genetic defect and epilepsy is not expressed. However, the lack of ClC-2 channels throws the nervous system into an unnaturally excited state. The scientists therefore speculate that although a defective ClC-2 gene does not cause epilepsy in itself, it may increase the risk of contracting epilepsy if other factors are present.

"We reckon, however, that we have come across something even more exciting", says Valentin Stein . The neurobiologist is referring to the discovery that nerve cells can theoretically use the ClC-2 channels to influence their own excitability. "If a nerve cell can control its own excitability by opening or closing its ClC-2 channels, then it could basically have a say in whether or not it transmits information to its neighbour." This possibility adds a whole new dimension to brain research. When and how nerve cells transmit information is one of the most fundamental functions of the brain and forms the basis of our ability to think. And so it comes as no surprise that the scientists can hardly wait to get on with the next stage of their investigations into this discovery.


'/>"/>

Contact: Valentin Stein
vstein@neuro.mpg.de
Max-Planck-Gesellschaft
Source:Eurekalert  

Related biology news :

1. Chloride increases response to pheromones and odors in mouse sensory neurons
2. Chloride found at levels that can harm aquatic life in urban streams of the Northern US
3. A lab-on-a-chip with moveable channels
4. MDC researchers develop new tool to investigate ion channels
5. Nervy research: Researchers take initial look at ion channels in a model system
6. Researcher says microchannels could advance tissue engineering methods
7. International collaboration by scientists culminates in novel ion channels database
8. New research helps explain how connexin hemichannels are kept closed
9. Journal of General Physiology explores mysteries of TRP channels in latest Perspectives series
10. CSHL researchers identify gene that helps plant cells keep communication channels open
11. Site used by sodium to control sensitivity of certain potassium ion channels
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Chloride channels render nerve cells more excitable
(Date:12/15/2016)... Germany , December 15, 2016 ... today announced an agreement with NuData Security, an award-winning ... The partnership will enable clients to focus on good customer ... data protection regulation. ... In order to provide a one-stop fraud prevention ...
(Date:12/15/2016)... DUBLIN , Dec 15, 2016 ... Research and Markets has announced ... to their offering. The report forecasts the global military ... 2016-2020. The report has been prepared based on an ... market landscape and its growth prospects over the coming years. The report ...
(Date:12/15/2016)... 15, 2016  There is much more to innovative ... the engine. Continental will demonstrate the intelligence of today,s ... . Through the combination of the keyless entry ... biometric elements, the international technology company is opening up ... authentication. "The integration of biometric elements brings ...
Breaking Biology News(10 mins):
(Date:1/17/2017)...  Only nine percent of U.S. consumers believe pharmaceutical ... 16 percent believe health insurance companies do, according to ... of U.S. adults believe health care providers (such as ... hospitals (23%). "We are in the midst ... , vice president of reputation management and public affairs ...
(Date:1/17/2017)... ... 2017 , ... Pono Ola , a mind-body wellness firm on a ... official launch of its much-anticipated Pono Board: a re-invented fitness and anti-fatigue balance board ... over a year, the patented Pono Board is the world’s only exercise balance board ...
(Date:1/17/2017)... ... January 17, 2017 , ... ... research, recently announced a collaboration with the Heidelberg University Hospital and the German ... library preparation, following the company’s successful launch of its CATS (Capture and ...
(Date:1/16/2017)... ... January 16, 2017 , ... Appellate Court of ... on the appeal filed by India-based Dishman Pharmaceutical & Chemical Ltd. company (DPCL) ... and one of its Dishman Group’s 100% wholly owned New Jersey-based subsidiary Dishman ...
Breaking Biology Technology: