Navigation Links
Chemists document workings of key staph enzyme -- and how to block it
Date:1/18/2011

CHAMPAIGN, Ill. Researchers have determined the structure and mechanism of an enzyme that performs the crucial first step in the formation of cholesterol and a key virulence factor in staph bacteria.

Chemists at the University of Illinois and collaborators in Taiwan studied a type of enzyme found in humans, plants, fungi, parasites, and many bacteria that begins the synthesis of triterpenes one of the most abundant and most ancient classes of molecules. Triterpenes are precursors to steroids such as cholesterol.

"These enzymes are important drug targets," said chemistry professor Eric Oldfield, who co-led the study. "Blocking their activity can lead to new cholesterol-lowering drugs, antibiotics that cure staph infections, and drugs that target the parasites that cause tropical maladies such as Chagas disease a leading cause of sudden death in Latin America."

For the study, the team picked a representative enzyme, dehydrosqualene synthase (CrtM), from the Staphylococcus aureus bacterium. Staph is one of the most common, yet notoriously hard to kill, bacterial infections. A key reason for staph's resilience is a golden-colored coating called staphyloxanthin that protects it from the body's immune system. CrtM catalyzes the first reaction in making staphyloxanthin, so inhibiting it would strip the bacteria of their protective coats and leave them vulnerable to attack by white blood cells.

The researchers already knew what CrtM looked like and its end product, but they didn't know how the enzyme did its job. Uncovering the mechanism of action would enable scientists to design better inhibitors, and even tailor them to other targets.

The team crystallized the enzyme and soaked it with intermediates and inhibitors. They then studied the complex structures by X-ray crystallography using the synchrotron at the Advanced Photon Source at Argonne National Laboratory.

They found that CrtM performs a two-step reaction, individually removing two diphosphate groups from the substrate. The substrate switches between two active sites within the enzyme as the reaction progresses. The most effective inhibitors bind to both sites, blocking the enzyme from any action.

"The leads that people have been developing for treating these diseases really haven't had any structural basis," said Oldfield, also a professor of biophysics. "But now that we can see how the protein works, we're in a much better position to design molecules that will be much more effective against staph infections and parasitic diseases, and potentially, in cholesterol-lowering."


'/>"/>

Contact: Liz Ahlberg
eahlberg@illinois.edu
217-244-1073
University of Illinois at Urbana-Champaign
Source:Eurekalert  

Related biology news :

1. US launches International Year of Chemistry Feb. 1 with panel of world-renowned chemists
2. Chemists concoct new agents to easily study critical cell proteins
3. Team of chemists produces biodiesel at their university, using used cooking oil as a basis
4. Brown University chemists simplify biodiesel conversion
5. Scripps researchers, UCSD chemists to create center devoted to chemistrys influence on climate
6. Caltech chemists develop simple technique to visualize atomic-scale structures
7. DNA puts Stanford chemists on scent of better artificial nose
8. MIT chemists design new way to fluorescently label proteins
9. Colorado State University biochemists study how chromosomes unravel to let genes do their jobs
10. Chemists influence stem-cell development with geometry
11. Behavior of single protein observed in unprecedented detail by Stanford chemists
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Chemists document workings of key staph enzyme -- and how to block it
(Date:3/29/2017)...  higi, the health IT company that operates the ... , today announced a Series B investment from ... The new investment and acquisition accelerates higi,s strategy to ... population health activities through the collection and workflow integration ... collects and secures data today on behalf of over ...
(Date:3/24/2017)... 24, 2017 The Controller General of Immigration from ... Abdulla Algeen have received the prestigious international IAIR Award for the ... Continue Reading ... ... Controller Abdulla Algeen (small picture on the right) have received the IAIR ...
(Date:3/23/2017)... DUBLIN , Mar. 23, 2017 Research ... Anti-Theft System Market Analysis & Trends - Industry Forecast to 2025" ... ... to grow at a CAGR of around 8.8% over the next ... This industry report analyzes the market estimates and forecasts for all ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... , ... October 11, 2017 , ... ... President Andi Purple announced Dr. Suneel I. Sheikh, the co-founder, CEO and ... Labs ), Inc. has been selected for membership in ARCS Alumni Hall ...
(Date:10/11/2017)... ... October 11, 2017 , ... Proscia Inc ... hosting a Webinar titled, “Pathology is going digital. Is your lab ready?” with ... adoption best practices and how Proscia improves lab economics and realizes an increase ...
(Date:10/11/2017)... ... 2017 , ... A new study published in Fertility and ... in vitro fertilization (IVF) transfer cycles. The multi-center matched cohort study ... comparing the results from the fresh and frozen transfer cohorts, the authors of ...
(Date:10/10/2017)... ... October 10, 2017 , ... ... FirstHand program has won a US2020 STEM Mentoring Award. Representatives of the FirstHand ... Excellence in Volunteer Experience from US2020. , US2020’s mission is to change the ...
Breaking Biology Technology: