Navigation Links
Chemistry turns killer gas into potential cure
Date:10/15/2007

Despite its deadly reputation, the gas carbon monoxide (CO) could actually save lives and boost health in future as a result of leading-edge UK research.

Chemists at the University of Sheffield have discovered an innovative way of using targeted small doses of CO which could benefit patients who have undergone heart surgery or organ transplants and people suffering from high blood pressure.

Although the gas is lethal in large doses, small amounts can reduce inflammation, widen blood vessels, increase blood flow, prevent unwanted blood clotting and even suppress the activity of cells and macrophages* which attack transplanted organs. The researchers have developed innovative water-soluble molecules which, when swallowed or injected, safely release small amounts of CO inside the human body.

Research carried out in the last decade had already highlighted possible advantages, as CO is produced in the body as part of its own natural defensive systems. However, the problem has been finding a safe way of delivering the right dose of CO to the patient. Conventional CO inhalation can run the risk of patients or medical staff being accidentally exposed to high doses. Now for the first time, thanks to chemistry, an answer appears to have been found.

The new CO-releasing molecules (CO-RMs) have been developed in partnership with Dr Roberto Motterlini at Northwick Park Institute for Medical Research (NPIMR) and with funding from the Engineering and Physical Sciences Research Council (EPSRC).

The molecules dissolve in water, so they can be made available in an easy-to-ingest, liquid form that quickly passes into the bloodstream, says Professor Brian Mann, from the University's Department of Chemistry, who led the research. As well as making it simple to control how much CO is introduced into a patients body, it will be possible to refine the design of the molecules so that they target a particular place while leaving the rest of the body unaffected.

The CO-RMs consist of carbonyls** of metals such as ruthenium, iron and manganese which are routinely used in clinical treatments. They can be designed to release CO over a period of between 30 minutes and several hours, depending on what is required to treat a particular medical condition.

As well as boosting survival rates and cutting recovery times, the new molecules could ease pressure on hospital budgets by reducing the time that patients need to spend in hospital, for example after an operation. They could even help some patients to avoid going into hospital in the first place.

Professor Mann added: This project provides an excellent example of how non-biological sciences like chemistry can underpin important advances in healthcare.

hemoCORM Ltd, a spinout company set up in 2004 by the University of Sheffield and NPIMR, is now taking the research towards commercialisation. It is hoped that, after further development work, Phase 1 clinical trials can begin in around two years, with deployment in the healthcare sector potentially achievable in around five years.


'/>"/>

Contact: Natasha Richardson
natasha.richardson@epsrc.ac.uk
44-017-934-44404
Engineering and Physical Sciences Research Council
Source:Eurekalert

Related biology news :

1. ASU researchers finds novel chemistry at work to provide parrots vibrant red colors
2. Breakthrough in micro-device fabrication combines biology and synthetic chemistry
3. Male elephants woo females with precise chemistry
4. Computer-chemistry yields new insight into a puzzle of cell division
5. Precision biochemistry tracks DNA damage in fish
6. Smoking changes brain chemistry
7. Comments, experts and background on the 2006 Nobel Prize in chemistry
8. New brain-chemistry differences found in depressed women
9. Lack of enzyme turns fat cells into fat burners
10. Programmable cells: Engineer turns bacteria into living computers
11. Gene therapy turns off mutation linked to Parkinsons disease
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/19/2017)... The global military biometrics market ... by the presence of several large global players. The ... major players - 3M Cogent, NEC Corporation, M2SYS Technology, ... 61% of the global military biometric market in 2016. ... military biometrics market boast global presence, which has catapulted ...
(Date:4/11/2017)... BEACH GARDENS, Fla. , April 11, 2017 ... identity management and secure authentication solutions, today announced ... contract by Intelligence Advanced Research Projects Activity (IARPA) ... for IARPA,s Thor program. "Innovation has ... onset and IARPA,s Thor program will allow us ...
(Date:4/5/2017)...  The Allen Institute for Cell Science today announces ... portal and dynamic digital window into the human cell. ... application of deep learning to create predictive models of ... a growing suite of powerful tools. The Allen Cell ... publicly available resources created and shared by the Allen ...
Breaking Biology News(10 mins):
(Date:4/27/2017)... ... April 27, 2017 , ... ... Borlaug CAST Communication Award goes to Jayson Lusk, a consummate communicator who promotes ... media to advocate for science, as he explains how innovation and growth in ...
(Date:4/26/2017)... SAN DIEGO, CALIF. (PRWEB) , ... April 26, ... ... Mother’s Day? Lajollacooks4u, San Diego’s premiere team-building and cooking events company, offers ... cooking classes. , Menus specialize in California cuisine, and guests leave inspired ...
(Date:4/26/2017)... ... April 25, 2017 , ... LABS, Inc. (LABS) announced in December 2016 ... extensive test menu: Nucleic Acid Testing (NAT) for ZIKV; and Enzyme Immunoassays (EIAs) specific ... offer NAT screening for blood donors under an Investigational New Drug (IND) study protocol. ...
(Date:4/26/2017)... Va. (PRWEB) , ... April 26, 2017 , ... ... make headlines and drive high-level conversations among healthcare industry stakeholders, the discussion surrounding ... Environment – taking place May 15-18, 2017 in Los Angeles, Calif. Hosted by ...
Breaking Biology Technology: