Navigation Links
Chemistry resolves toxic concerns about carbon nanotubes
Date:1/15/2013

Safety fears about carbon nanotubes, due to their structural similarity to asbestos, have been alleviated following research showing that reducing their length removes their toxic properties.

In a new study, published today in the journal Angewandte Chemie, evidence is provided that the asbestos-like reactivity and pathogenicity reported for long, pristine nanotubes can be completely alleviated if their surface is modified and their effective length is reduced as a result of chemical treatment.

First atomically described in the 1990s, carbon nanotubes are sheets of carbon atoms rolled up into hollow tubes just a few nanometres in diameter. Engineered carbon nanotubes can be chemically modified, with the addition of chemotherapeutic drugs, fluorescent tags or nucleic acids opening up applications in cancer and gene therapy.

Furthermore, these chemically modified carbon nanotubes can pierce the cell membrane, acting as a kind of 'nano-needle', allowing the possibility of efficient transport of therapeutic and diagnostic agents directly into the cytoplasm of cells.

Among their downsides however, have been concerns about their safety profile. One of the most serious concerns, highlighted in 2008, involves the carcinogenic risk from the exposure and persistence of such fibres in the body. Some studies indicate that when long untreated carbon nanotubes are injected to the abdominal cavity of mice they can induce unwanted responses resembling those associated with exposure to certain asbestos fibres.

In this paper, the authors describe two different reactions which ask if any chemical modification can render the nanotubes non-toxic. They conclude that not all chemical treatments alleviate the toxicity risks associated with the material. Only those reactions that are able to render carbon nanotubes short and stably suspended in biological fluids without aggregation are able to result in safe, risk-free material.

Professor Kostas Kostarelos, Chair of Nanomedicine at the UCL School of Pharmacy who led the research with his long term collaborators Doctor Alberto Bianco of the CNRS in Strasbourg, France and Professor Maurizio Prato of the University of Trieste, Italy, said: "The apparent structural similarity between carbon nanotubes and asbestos fibres has generated serious concerns about their safety profile and has resulted in many unreasonable proposals of a halt in the use of these materials even in well-controlled and strictly regulated applications, such as biomedical ones. What we show for the first time is that in order to design risk-free carbon nanotubes both chemical treatment and shortening are needed."

He added: "Creative strategies to identify the characteristics that nanoparticles should possess in order to be rendered 'safe-for-use', and the ways to achieve that, are essential as nanotechnology and its tools are maturing into applications and becoming part of our everyday lives."


'/>"/>
Contact: Clare Ryan
clare.ryan@ucl.ac.uk
44-020-310-83846
University College London
Source:Eurekalert

Related biology news :

1. LAMIS -- a green chemistry alternative for laser spectroscopy
2. UCLAs Yi Tang receives Presidential Green Chemistry Challenge Award from EPA
3. Pulverized rocks, coral reefs, seawater chemistry, and continental collisions
4. Scientists connect seawater chemistry with climate change and evolution
5. Chemistry on Mars video with Curiosity Rover from the American Chemical Society
6. Changes in water chemistry leave lake critters defenseless
7. New Market Forecasts Available for Critical Global Biotechnology Testing and Screening Markets: Molecular Diagnostics, Hematology, Clinical Chemistry and Nucleic Acid Testing
8. Astrochemistry enters a bold new era with ALMA
9. Emory receives $20 million NSF grant for chemistry center
10. The Journal of Biological Chemistry commemorates an important 1987 discovery
11. Model sheds light on the chemistry that sparked the origin of life
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/14/2016)... SANTA CLARA, Calif. , Nov. 14, ... of the biometric identification market, Frost & ... Global Frost & Sullivan Award for Visionary ... leading player in the biometric identification market ... a multi-modal verification solution for instant, seamless, ...
(Date:6/22/2016)...  The American College of Medical Genetics and Genomics was ... as one of the fastest-growing trade shows during the Fastest ... in Las Vegas . ... in each of the following categories: net square feet of ... attendees. The 2015 ACMG Annual Meeting was ranked 23 out ...
(Date:6/22/2016)... On Monday, the Department of Homeland Security ... solutions for the Biometric Exit Program. The Request for ... (CBP), explains that CBP intends to add biometrics to ... United States , in order to deter visa ... Logo - http://photos.prnewswire.com/prnh/20160622/382209LOGO ...
Breaking Biology News(10 mins):
(Date:12/8/2016)... ... , ... Lajollacooks4u, San Diego’s premier team building events and cooking events company, ... offerings and company expansion. , This is largely due to its team ... 30 people. Ever since, Lajollacooks4u has seen significant demand for its services from organizations ...
(Date:12/8/2016)... 2016 AskLinkerReports.com has published a report ... Amyloglucosidase Industry 2016 Market Research Report. From a basic outline ... overview are all covered in the report. This report projects ... analysis of the Amyloglucosidase industry. ... , , ...
(Date:12/8/2016)... Iowa , Dec. 8, 2016 Eurofins announces the ... Food and President of Eurofins Scientific Inc. (ESI). ... with his proven professional and entrepreneurial experience in leading international business ... the US food testing market to uphold Eurofins, status as the ... ...
(Date:12/8/2016)... 8, 2016 Oxford ... erweitert seine Palette an anpassbaren SureSeq™ NGS-Panels mit ... Panels, das ein schnelles und kostengünstiges Studium der ... bietet eine Erkennung von Einzel-Nukleotid-Variationen (Single Nucleotide Variation, ... einzigen kleinen Panel und ermöglicht eine individuelle Anpassung ...
Breaking Biology Technology: