Navigation Links
Checkered history of mother and daughter cells explains cell cycle differences

When mother and daughter cells are created each time a cell divides, they are not exactly alike. They have the same set of genes, but differ in the way they regulate them. New research now reveals that these regulatory differences between mother and daughter cells are directly linked to how they prepare for their next split. The work, a collaboration between scientists at Rockefeller University and the State University of New York, Stony Brook, may ultimately lead to a better understanding of how cell division goes awry in different types of cancer. The findings are reported in this week's PLoS Biology.

"You can basically think of mother and daughter cells as different cells just like you would a neuron and liver cell but on a much subtler level," says first author Stefano Di Talia, who received his Ph.D. from Rockefeller in 2009. "We found that their differences in gene expression are also what makes the mother and daughter cells start their cell cycles differently."

When a mature cell divides, it produces a mother and a daughter cell, the daughter being smaller than the mother, explains Di Talia, who is now a postdoc at Princeton University. Since the 1970s, it was thought that both mother and daughter cells use the same gears and levers to prepare for cell division. The only difference was that the daughter cell would take longer to start dividing on account of its size.

This tidy explanation now gives way to a more nuanced version, the seeds of which can be traced to research from the University of Wisconsin in 2003. It was then proposed that the size of the daughter cell has no bearing on whether it is ready to divide. What matters is that the daughter cell, and not the mother cell, receives a protein called Ace2 at the time the two cells are born. "This model was against the accepted dogma and against our own previous findings. Our work was an attempt to resolve the debate," says Di Talia.

Di Talia and Frederick R. Cross, head of Rockefeller's Laboratory of Yeast Molecular Genetics and a researcher who, like the Wisconsin group, works with budding yeast, seem to have reconciled the two theories and in the process nailed down new details.

The researchers found that both mothers and daughters do control and sense their size before committing to divide but the levers and gears that they use to make that commitment are different. The reason: Daughters, but not mothers, receive the protein Ace2 as well as a never-before-implicated protein called Ash1, which, like Ace2, controls the levers that crank genes into gear.

In their work, Di Talia and Cross studied a phase of the cell cycle known as G1, during which cells determine whether they are healthy enough to enter another grueling phase of division. G1 is considered critical because mistakes in this process can lead to cancer.

Di Talia and Cross, with colleagues Bruce Futcher and Hongyin Wang at SUNY Stony Brook, found that daughter cells, which normally have Ace2 and Ash1, interpret their size as 20 percent smaller than their birth twin. The researchers show that, without these proteins, daughter cells begin dividing as if they were mother cells, even at a size that would normally be deemed too small. When Ace2 and Ash1 were genetically manipulated to localize into mothers as well, the opposite happened: they unnecessarily continued to grow and began dividing as if they were daughters.

This critical finding showed that the direct target of these two proteins is a gene called CLN3, which scientists have long suspected is the ultimate green light for cells to start dividing. The reason daughter cells spend a longer time preparing for cell division is because both Ace2 and Ash1 lower the expression of CLN3. To make sure daughter cells do not start dividing before they are ready, and as backup, Ace2 also turns on production of Ash1.

"This work builds on our previous findings very nicely," says Di Talia. "That CLN3 is the central regulator of this cell cycle phase and that it is controlled very precisely shows that even small changes can result in big differences."


Contact: Thania Benios
Rockefeller University

Related biology news :

1. Algae and pollen grains provide evidence of remarkably warm period in Antarcticas history
2. End of an era: New ruling decides the boundaries of Earths history
3. Scientists use microRNAs to track evolutionary history for first time
4. Salt marshes: A natural and unnatural history
5. Geography and history shape genetic differences in humans
6. History of hyperactivity off-base, says researcher
7. Penn Medicine honored for its historic role in the history of microbiology
8. Tiny differences in our genes help shed light on the big picture of human history
9. DOE makes largest Danforth Campus research award in history
10. Study of protein structures reveals key events in evolutionary history
11. Chantix side effects no worse with depression history
Post Your Comments:
(Date:11/2/2015)... PARK, Calif. , Nov. 2, 2015  SRI ... $9 million to provide preclinical development services to the ... the contract, SRI will provide scientific expertise, modern testing ... wide variety of preclinical pharmacology and toxicology studies to ... --> The PREVENT Cancer Drug Development ...
(Date:10/29/2015)... , Oct. 29, 2015  Rubicon Genomics, ... for U.S. distribution of its DNA library preparation ... and Rubicon,s new ThruPLEX Plasma-seq kit. ThruPLEX Plasma-seq ... the preparation of NGS libraries for liquid biopsies--the ... diagnostic and prognostic applications in cancer and other ...
(Date:10/27/2015)... In the present market scenario, security is ... industry verticals such as banking, healthcare, defense, electronic gadgets, ... for secure & simplified access control and growing rate ... of bank accounts, misuse of users, , and so ... laptops, and smartphones are expected to provide potential opportunities ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... Halozyme Therapeutics, Inc. (NASDAQ: HALO ) will be presenting at ... on Wednesday, December 2 at 9:30 a.m. ET/6:30 a.m. PT ... provide a corporate overview. th Annual Oppenheimer Healthcare ... ET/10:00 a.m. PT . Jim Mazzola , vice president ... --> th Annual Oppenheimer Healthcare Conference in ...
(Date:11/24/2015)... ... November 24, 2015 , ... International Society ... one of the premier annual events for pharmaceutical manufacturing: 2015 Annual Meeting. The ... where ISPE hosted the largest number of attendees in more than a decade. ...
(Date:11/24/2015)... -- --> --> ... Market by Product & Services (Primer, Probe, Custom Oligos, ... End-User (Research, Pharmaceutical & Biotech, Diagnostic Labs) - Global ... expected to reach USD 1,918.6 Million by 2020 from ... 10.1% during the forecast period. Browse 183 ...
(Date:11/24/2015)... , November 24, 2015 SHPG ) ... participate in the Piper Jaffray 27 th Annual Healthcare Conference ... December 1, 2015, at 8:30 a.m. EST (1:30 p.m. GMT). ... Chief Financial Officer, will participate in the Piper Jaffray 27 th ... , NY on Tuesday, December 1, 2015, at 8:30 a.m. EST ...
Breaking Biology Technology: