Navigation Links
Cellular secrets of plant fatty acid production understood
Date:5/14/2012

A curious twist in a family of plant proteins called chalcone-isomerase recently was discovered by Salk Institute for Biological Studies scientist Joseph Noel and colleagues at Iowa State University led by Eve Wurtele.

Pursuing basic scientific discovery, they found three similar proteins that could soon translate into positive results for bio-renewable fuels, commodity chemicals like plastics, food security and nutrition and biomedicine.

The findings, reported May 13 in advance online publication of the journal Nature, may lead to higher-yield crops and quantities of oils, help to address growing world demands for food and fuel, and mitigate environmental pressures on stressed ecosystems.

Researchers long wondered about the origin and action of the chalcone-isomerase. They knew it played a key role in producing flavonoids--compounds important to plants for many reasons including defense as natural sunscreens and antibiotics, attraction of pollinators and development.

Flavonoids are also valuable in disease prevention agents as nutraceuticals and in plant-rich diets-employed in fighting cancer and other age-related diseases.

Looking into the evolution of the plant protein, the researchers discovered three Chalcone-isomerase cousins that bind fatty acids.

"This is a beautiful study demonstrating that Chalcone-isomerase arose from another important class of proteins, which have no enzymatic activity but bind fatty acids," said Greg Warr, acting deputy director of the National Science Foundation's Division of Molecular and Cellular Biosciences, which funded the study.

"The findings may have important implications for agriculture and biofuel development."

Researchers found the Chalcone-isomerase cousins clustered in something called chloroplasts, specialized parts of a cell that serve as the engines of photosynthesis, but also the key place for making essential fatty acids, including omega-3 fatty acids.

Fatty acids, such as omega-3s, are as important to both plant and human well-being as the flavonoids. Noel and colleagues' research shows that bringing about changes in the genes that encoded for the chalcone-isomerase cousins produced reproductive changes in plants.

Bringing about changes in the genes for this protein family had an effect on seed oil content, something vital for the energy stores of the plant embryo but also for human nutrition and new kinds of renewable fuels.

As the benefits of over a decade of basic research on chalcone-isomerase are reaped, biologists look forward to opening the door for bio-engineers. Armed with the structures of the four proteins, bio-engineers will be able to adjust the plant cellular factory for fatty acid production to the advantage and benefit of agriculture as well as the fields of renewable energy, biorenewable chemicals and biomedicine.


'/>"/>

Contact: Bobbie Mixon
bmixon@nsf.gov
703-292-8485
National Science Foundation
Source:Eurekalert  

Related biology news :

1. Increased fructose consumption may deplete cellular energy in patients with obesity and diabetes
2. Salk scientists open new window into how cancers override cellular growth controls
3. Anticipation of stressful situations accelerates cellular aging
4. Computer sleuthing helps unravel RNAs role in cellular function
5. LA BioMeds Dr. John Torday examines evolution from a cellular perspective
6. Van Andel research institute study provides new details of fundamental cellular process
7. New study sheds light on evolutionary origin of oxygen-based cellular respiration
8. NPL models the extracellular matrix
9. Cellular processing of proteins found in Congolese child birthing tea now revealed
10. Biocompatible graphene transistor array reads cellular signals
11. Study of flower petals shows evolution at the cellular level
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Cellular secrets of plant fatty acid production understood
(Date:3/31/2016)... , March 31, 2016   ... ("LegacyXChange" or the "Company") LegacyXChange is excited ... of its soon to be launched online site for ... https://www.youtube.com/channel/UCyTLBzmZogV1y2D6bDkBX5g ) will also provide potential shareholders a ... DNA technology to an industry that is notorious for ...
(Date:3/29/2016)... 29, 2016 LegacyXChange, Inc. (OTC: ... and SelectaDNA/CSI Protect are pleased to announce our successful ... a variety of writing instruments, ensuring athletes signatures against ... collectibles from athletes on LegacyXChange will be assured of ... DNA. Bill Bollander , CEO states, ...
(Date:3/22/2016)... India , March 22, 2016 /PRNewswire/ ... market research report "Electronic Sensors Market for Consumer ... Proximity, & Others), Application (Communication & IT, ... Geography - Global Forecast to 2022", published ... industry is expected to reach USD 26.76 ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... Brooklyn, NY (PRWEB) , ... June 24, 2016 , ... ... 15mm, machines such as the Cary 5000 and the 6000i models are higher end ... height is the height of the spectrophotometer’s light beam from the bottom of the ...
(Date:6/23/2016)... 23, 2016 /PRNewswire/ - FACIT has announced the ... biotechnology company, Propellon Therapeutics Inc. ("Propellon" or ... of a portfolio of first-in-class WDR5 inhibitors for ... as WDR5 represent an exciting class of therapies, ... medicine for cancer patients. Substantial advances have been ...
(Date:6/23/2016)... 2016  The Biodesign Challenge (BDC), a university competition ... harness living systems and biotechnology, announced its winning teams ... New York City . The ... projects at MoMA,s Celeste Bartos Theater during the daylong ... senior curator of architecture and design, and Suzanne ...
(Date:6/23/2016)... Apellis Pharmaceuticals, Inc. today announced positive ... its complement C3 inhibitor, APL-2. The trials were ... studies designed to assess the safety, tolerability, pharmacokinetics ... healthy adult volunteers. Forty subjects were ... dose (ranging from 45 to 1,440mg) or repeated ...
Breaking Biology Technology: