Navigation Links
Cellular landscaping: Predicting how, and how fast, cells will change
Date:11/1/2012

A research team at the National Institute of Standards and Technology (NIST) has developed a model* for making quantifiable predictions of how a group of cells will react and change in response to a given environment or stimulusand how quickly. The NIST model, in principle, makes it possible to assign reliable numbers to the complex evolution of a population of cells, a critical capability for efficient biomanufacturing as well as for the safety of stem cell-based therapies, among other applications.

The behavior and fate of cells are only partially determined by their DNA. A living cell reacts to both its internal and external environmentthe concentration of a particular protein inside itself or the chemistry of its surroundings, for exampleand those reactions are inherently probabilistic. You can't predict the future of any given cell with certainty.

This inherent uncertainty has consequences, according to NIST biochemist Anne Plant. "In the stem cell area in particular, there's a real safety and effectiveness issue because it's very hard to get 100 percent terminal differentiation of stem cells in a culture," she says. This could be problematic, because a therapist wishing to produce, say, heart muscle cells for a patient, might not want to introduce the wild card of undifferentiated stem cells. "Or effectiveness may be dependent on a mixture of cells at different stages of differentiation. One of the things that is impossible to predict at the moment is: if you waited longer, would the number of differentiated versus nondifferentiated cells change? Or if you were to just separate out the differentiated cells, does that really remove all the nondifferentiated cells? Or could some of them revert back?" says Plant.

The NIST experiments did not use stem cells, but rather fibroblasts, a common model cell for experiments. The team also used a standard tracking technique, modifying a gene of interestin this case, one that codes for a protein involved in building the extracellular support matrix in tissuesby adding a snippet that codes for a small fluorescent molecule. The more a given cell activates or expresses the gene, the brighter it glows under appropriate light. The team then monitored the cell culture under a microscope, taking an image every 15 minutes for over 40 hours to record the fluctuations in cell behavior, the cells waxing and waning in the degree to which they express the fluorescent gene.

Custom software developed at NIST was used to analyze each image. Both time-lapse data from individual cells and time-independent data from the entire population of cells went into a statistical model. The resulting graph of peaks and valleys, called a landscape, says Plant, "mathematically describes the range of possible cell responses and how likely it is for cells to exhibit these responses." In addition, she says, the time analysis provides kinetic information: how much will a cell likely fluctuate between states, and how quickly?

The combination makes it possible to predict the time it will take for a given percentage of cells to change their characteristics. For biomanufacturing, it means a finer control over cell-based processes. If applied to stem cells, the technique could be useful in predicting how quickly the cells differentiate and the probability of having undifferentiated cells present at any point in time.


'/>"/>

Contact: Michael Baum
michael.baum@nist.gov
301-975-2763
National Institute of Standards and Technology (NIST)
Source:Eurekalert  

Related biology news :

1. BioLife Solutions Products Now Used in More than 50 Clinical Trial-Stage Cellular Therapies
2. Newly demonstrated capabilities of low-powered nanotweezers may benefit cellular-level studies
3. Division of labor offers insight into the evolution of multicellular life
4. Researchers study knee stress at tissue, cellular levels
5. Stealthy microscopy method visualizes E. coli sub-cellular structure in 3-D
6. BUSM study shows role of cellular protein in regulation of binge eating
7. Groundbreaking discovery of the cellular origin of cervical cancer
8. A non-invasive intracellular thermometer with fluorescent proteins has been created
9. Make or break for cellular tissues
10. Cellular secrets of plant fatty acid production understood
11. Increased fructose consumption may deplete cellular energy in patients with obesity and diabetes
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Cellular landscaping: Predicting how, and how fast, cells will change
(Date:5/20/2016)...  VoiceIt is excited to announce its new ... By working together, VoiceIt and VoicePass will offer ... take slightly different approaches to voice biometrics, collaboration ... usability. Both ... "This marketing and technology partnership allows ...
(Date:5/9/2016)... , UAE, May 9, 2016 ... it comes to expanding freedom for high net worth ... Even in today,s globally connected world, there is still ... system could ever duplicate sealing your deal with a ... second passports by taking advantage of citizenship via investment ...
(Date:4/28/2016)... , April 28, 2016 First quarter ... (139.9), up 966% compared with the first quarter of 2015 ... totaled SEK 589.1 M (loss: 18.8) and the operating margin was ... (loss: 0.32) Cash flow from operations was SEK 249.9 ... 2016 revenue guidance is unchanged, SEK 7,000-8,500 M. The ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... ... 2016 , ... Charm Sciences, Inc. is pleased to announce ... Research Institute approval 061601. , “This is another AOAC-RI approval of the Peel ... President of Regulatory and Industrial Affairs. “The Peel Plate methods perform comparably to ...
(Date:6/23/2016)... ON (PRWEB) , ... June 23, 2016 , ... STACS ... DNA Technical Leader at the Arkansas State Crime Laboratory, has joined STACS DNA as ... the STACS DNA team,” said Jocelyn Tremblay, President and COO of STACS DNA. “In ...
(Date:6/23/2016)... On Wednesday, June 22, 2016, the NASDAQ Composite ... Jones Industrial Average edged 0.27% lower to finish at 17,780.83; ... has initiated coverage on the following equities: Infinity Pharmaceuticals Inc. ... NKTR ), Aralez Pharmaceuticals Inc. (NASDAQ: ARLZ ), ... more about these stocks by accessing their free trade alerts ...
(Date:6/23/2016)... , June 23, 2016 ... market research report to its pharmaceuticals section with ... product details and much more. Complete ... across 151 pages, profiling 15 companies and supported ... at http://www.reportsnreports.com/reports/601420-global-cell-culture-media-industry-2016-market-research-report.html . The ...
Breaking Biology Technology: