Navigation Links
Cellular gates for sodium and calcium controlled by common element of ancient origin
Date:7/1/2014

Researchers at Johns Hopkins have spotted a strong family trait in two distant relatives: The channels that permit entry of sodium and calcium ions into cells turn out to share similar means for regulating ion intake, they say. Both types of channels are critical to life. Having the right concentrations of sodium and calcium ions in cells enables healthy brain communication, heart contraction and many other processes. The new evidence is likely to aid development of drugs for channel-linked diseases ranging from epilepsy to heart ailments to muscle weakness.

"This discovery was long in coming," says David Yue, M.D., Ph.D., a professor in the Johns Hopkins University School of Medicine's Department of Biomedical Engineering. His team's report, which appears in the June 19 issue of the journal Cell, had its genesis in the 1990s with another group's observation that sodium and calcium channels bear a striking resemblance in a small portion of an otherwise very different structure. "It looked like this 'resemblance element' might be a molecular time capsule derived from a primeval ion channel thought to have birthed distinct sodium and calcium channels a billion years ago," Yue says.

For calcium channels, Yue's and other research groups found that the resemblance element supports an important function, preventing the channel from opening when the cellular calcium level gets high. This prevents too much calcium from building up within cells, much like a thermostat controls household temperatures. This calcium control requires a calcium-sensing molecule called calmodulin, which binds to channels within the resemblance element.

The picture for sodium channels, however, was muddier, with different researchers reporting conflicting findings about whether calmodulin and the resemblance element prevent the opening of sodium channels; perhaps the time capsule was damaged over the millenia or was never there.

Manu Ben-Johny, a graduate student in Yue's laboratory, took up the question. "We thought that the conflicting results for sodium channels might be related to difficulties in existing methods to control the calcium concentrations that might affect these channels," Ben-Johny says.

Looking for a new way to approach the problem, Yue's team bound calcium ions in molecular "cages" that could be opened with a flash of light. This enabled them to "smuggle" calcium ions into cells and see what happened to sodium channels when the calcium concentration changed abruptly. They found that, as with calcium channels, increasing calcium concentrations caused calmodulin to bind within the resemblance element of sodium channels and prevent their opening, just as in calcium channels.

The implications of a common control element in sodium and calcium channels are vast, Yue says, including unified understanding of conditions that spring from defects in the calcium control of these channels. In addition, he says, "Researchers have long sought drugs that modulate sodium and calcium channels in new ways. Targeting the common control element offers a new frontier for developing next-generation pharmaceuticals."


'/>"/>

Contact: Shawna Williams
shawna@jhmi.edu
410-955-8236
Johns Hopkins Medicine
Source:Eurekalert  

Related biology news :

1. Salk scientists open new window into how cancers override cellular growth controls
2. Increased fructose consumption may deplete cellular energy in patients with obesity and diabetes
3. Cellular secrets of plant fatty acid production understood
4. Make or break for cellular tissues
5. A non-invasive intracellular thermometer with fluorescent proteins has been created
6. Groundbreaking discovery of the cellular origin of cervical cancer
7. BUSM study shows role of cellular protein in regulation of binge eating
8. Stealthy microscopy method visualizes E. coli sub-cellular structure in 3-D
9. Researchers study knee stress at tissue, cellular levels
10. Division of labor offers insight into the evolution of multicellular life
11. Newly demonstrated capabilities of low-powered nanotweezers may benefit cellular-level studies
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Cellular gates for sodium and calcium controlled by common element of ancient origin
(Date:3/30/2017)... The research team of The Hong Kong Polytechnic University (PolyU) ... ground breaking 3D fingerprint minutiae recovery and matching technology, pushing contactless ... use in identification, crime investigation, immigration control, security of access and ... ... A research team led by Dr Ajay Kumar ...
(Date:3/28/2017)... 2017 The report "Video Surveillance ... Servers, Storage Devices), Software (Video Analytics, VMS), and Service ... Forecast to 2022", published by MarketsandMarkets, the market was ... projected to reach USD 75.64 Billion by 2022, at ... base year considered for the study is 2016 and ...
(Date:3/24/2017)... Research and Markets has announced the addition of the ... Industry Forecast to 2025" report to their offering. ... The Global Biometric Vehicle Access ... 15.1% over the next decade to reach approximately $1,580 million by ... and forecasts for all the given segments on global as well ...
Breaking Biology News(10 mins):
(Date:8/17/2017)... Village, CA (PRWEB) , ... August 17, 2017 ... ... technology for cancer research and personalized medicine, today announced the launch of a ... Kansas City, Missouri. The study’s goal is to evaluate the potential for early ...
(Date:8/16/2017)... ... August 16, 2017 , ... Today, 3Bar Biologics Inc ... $2M in funding from an impressive group of investors, including Rev1 Ventures, Maumee ... With this investment, 3Bar is broadening availability of its groundbreaking offering that uses ...
(Date:8/15/2017)... Charlotte, NC (PRWEB) , ... August 15, 2017 , ... ... in 2017, celebrating 10 years of successes helping medical technology companies and inventors develop ... company to a renowned full-service national engineering firm with a portfolio of clients in ...
(Date:8/15/2017)... , ... August 15, 2017 , ... The Conference ... on Immuno-Oncology 360° (IO360°) programming through a series of upcoming panels and events. The ... 7-9, 2018, at The Roosevelt Hotel in New York City. , “With our experience ...
Breaking Biology Technology: