Navigation Links
Cellular defence against fatal associations between proteins and DNA
Date:7/3/2014

This news release is available in German.

DNA - the carrier of genetic information - is constantly threatened by damage originating from exogenous and endogenous sources. Very special DNA lesions are DNA-protein crosslinks - proteins covalently linked to DNA. So far hardly anything was known about repair mechanisms specifically targeting DNA-protein crosslinks. Stefan Jentsch's team at the Max Planck Institute of Biochemistry in Martinsried, Germany, now discovered a protease that is able to chop down the protein component of DNA-protein crosslinks, thereby enabling organisms to copy their genetic information even if crosslinks arise. The results of this study have major implications for the understanding of genome integrity and cancer development.

The DNA in each cell is highly vulnerable to various types of damage. A special class of damage is caused by reactive compounds, such as formaldehyde, which are produced as byproducts of cellular reactions and cause the crosslinking (a formation of a covalent linkage) of proteins to DNA. Importantly, these so-called DNA-protein crosslinks are also caused by several anti-cancer drugs and are extremely toxic as they interfere with essential processes such as DNA replication. Cells need to unwind and separate the DNA double helix in order to copy its genetic information prior to the next round of cell division. DPCs inhibit this process by blocking the way of the unwinding enzyme replicative helicase, thus preventing replication and consequently cell division.

In the laboratory of Stefan Jentsch at the Max-Planck-Institute of Biochemistry, scientists now identified the protease Wss1 as a new safeguarding factor that chops down the protein components of DNA-protein crosslinks and thereby enables cells to duplicate their genome. Julian Stingele, a PhD student in the laboratory, found that cells lacking Wss1 are particularly sensitive to formaldehyde, extremely vulnerable to DNA-protein crosslinks and suffer from genomic instability. Notably, Wss1 has the unique property to cleave proteins only in the presence of DNA, suggesting that the enzyme is well tailored for its task to remove crosslinks from the genome and thus preserve genome stability.

Because the repair of DNA lesions is essential to prevent cancer formation, it is of crucial importance to understand the underlying cellular mechanisms. The newly identified DNA-protein crosslink-repair pathway is particularly important for rapidly dividing cells. Given the fact that cancer cells divide much faster than the majority of human cells, Wss1 might be an attractive future drug target for cancer therapy.


'/>"/>

Contact: Dr. Stefan Jentsch
jentsch@biochem.mpg.de
49-898-578-3010
Max-Planck-Gesellschaft
Source:Eurekalert  

Related biology news :

1. Cellular gates for sodium and calcium controlled by common element of ancient origin
2. Cellular team players
3. Researchers discover Trojan Horse method of penetrating cellular walls without harm
4. Family of proteins plays key role in cellular pump dynamics
5. Scientists capture most detailed images yet of humans tiny cellular machines
6. Which came first, bi- or tricellular pollen? New research updates a classic debate
7. UNC researchers link aging to cellular interactions that occur across generations
8. Organization of cellular photosystems
9. Protein rescues stuck cellular factories
10. Surface characteristics influence cellular growth on semiconductor material
11. Hot on the trail of cellular metabolism
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Cellular defence against fatal associations between proteins and DNA
(Date:4/5/2017)... , April 4, 2017 KEY FINDINGS ... to expand at a CAGR of 25.76% during the ... is the primary factor for the growth of the ... https://www.reportbuyer.com/product/4807905/ MARKET INSIGHTS The global stem ... technology, application, and geography. The stem cell market of ...
(Date:3/30/2017)... 30, 2017  On April 6-7, 2017, Sequencing.com will ... hackathon at Microsoft,s headquarters in ... focus on developing health and wellness apps that provide ... the Genome is the first hackathon for personal ... largest companies in the genomics, tech and health industries ...
(Date:3/29/2017)... 2017  higi, the health IT company that operates ... America , today announced a Series B investment ... EveryMove. The new investment and acquisition accelerates higi,s strategy ... transform population health activities through the collection and workflow ... higi collects and secures data today on behalf of ...
Breaking Biology News(10 mins):
(Date:4/19/2017)... Indiana (PRWEB) , ... April 18, 2017 , ... Alisa ... 2017 Distinguished Alumni Awards from the Purdue College of Pharmacy in Lafayette, Indiana. ... Purdue Pharmacy Program for achievements in their careers and other scientific endeavors. , ...
(Date:4/19/2017)... ... 19, 2017 , ... WHO: Peggy Lillis Foundation, the preeminent ... advocacy. Founded in 2010 in memory of a single-parent mom and kindergarten teacher ... the most-consulted source for patient-focused information on C. diff infections in the nation. ...
(Date:4/19/2017)... WESTMINSTER, Colo. , April 19, ... industry-leading specialty finance firm that provides senior debt ... announced the closing of a $20 million senior ... privately-held orthobiologics company engaged in the development and ... treatment of orthopedic injuries. Cerapedics, lead ...
(Date:4/18/2017)... Jordan, Utah (PRWEB) , ... April 18, 2017 ... ... and collaboration company, has been awarded Channel Partners 2017 Next-Gen Solution Provider. , ... create business value for customers with their vision, innovation, and advocacy of the ...
Breaking Biology Technology: