Navigation Links
Cellular defence against fatal associations between proteins and DNA
Date:7/3/2014

This news release is available in German.

DNA - the carrier of genetic information - is constantly threatened by damage originating from exogenous and endogenous sources. Very special DNA lesions are DNA-protein crosslinks - proteins covalently linked to DNA. So far hardly anything was known about repair mechanisms specifically targeting DNA-protein crosslinks. Stefan Jentsch's team at the Max Planck Institute of Biochemistry in Martinsried, Germany, now discovered a protease that is able to chop down the protein component of DNA-protein crosslinks, thereby enabling organisms to copy their genetic information even if crosslinks arise. The results of this study have major implications for the understanding of genome integrity and cancer development.

The DNA in each cell is highly vulnerable to various types of damage. A special class of damage is caused by reactive compounds, such as formaldehyde, which are produced as byproducts of cellular reactions and cause the crosslinking (a formation of a covalent linkage) of proteins to DNA. Importantly, these so-called DNA-protein crosslinks are also caused by several anti-cancer drugs and are extremely toxic as they interfere with essential processes such as DNA replication. Cells need to unwind and separate the DNA double helix in order to copy its genetic information prior to the next round of cell division. DPCs inhibit this process by blocking the way of the unwinding enzyme replicative helicase, thus preventing replication and consequently cell division.

In the laboratory of Stefan Jentsch at the Max-Planck-Institute of Biochemistry, scientists now identified the protease Wss1 as a new safeguarding factor that chops down the protein components of DNA-protein crosslinks and thereby enables cells to duplicate their genome. Julian Stingele, a PhD student in the laboratory, found that cells lacking Wss1 are particularly sensitive to formaldehyde, extremely vulnerable to DNA-protein crosslinks and suffer from genomic instability. Notably, Wss1 has the unique property to cleave proteins only in the presence of DNA, suggesting that the enzyme is well tailored for its task to remove crosslinks from the genome and thus preserve genome stability.

Because the repair of DNA lesions is essential to prevent cancer formation, it is of crucial importance to understand the underlying cellular mechanisms. The newly identified DNA-protein crosslink-repair pathway is particularly important for rapidly dividing cells. Given the fact that cancer cells divide much faster than the majority of human cells, Wss1 might be an attractive future drug target for cancer therapy.


'/>"/>

Contact: Dr. Stefan Jentsch
jentsch@biochem.mpg.de
49-898-578-3010
Max-Planck-Gesellschaft
Source:Eurekalert  

Related biology news :

1. Cellular gates for sodium and calcium controlled by common element of ancient origin
2. Cellular team players
3. Researchers discover Trojan Horse method of penetrating cellular walls without harm
4. Family of proteins plays key role in cellular pump dynamics
5. Scientists capture most detailed images yet of humans tiny cellular machines
6. Which came first, bi- or tricellular pollen? New research updates a classic debate
7. UNC researchers link aging to cellular interactions that occur across generations
8. Organization of cellular photosystems
9. Protein rescues stuck cellular factories
10. Surface characteristics influence cellular growth on semiconductor material
11. Hot on the trail of cellular metabolism
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Cellular defence against fatal associations between proteins and DNA
(Date:4/5/2017)... , April 4, 2017 KEY FINDINGS ... anticipated to expand at a CAGR of 25.76% during ... diseases is the primary factor for the growth of ... report: https://www.reportbuyer.com/product/4807905/ MARKET INSIGHTS The global ... product, technology, application, and geography. The stem cell market ...
(Date:3/30/2017)... The research team of The Hong Kong Polytechnic University (PolyU) ... ground breaking 3D fingerprint minutiae recovery and matching technology, pushing contactless ... use in identification, crime investigation, immigration control, security of access and ... ... A research team led by Dr Ajay Kumar ...
(Date:3/27/2017)... , March 27, 2017  Catholic Health Services ... Management Systems Society (HIMSS) Analytics for achieving Stage ... Model sm . In addition, CHS previously earned ... hospitals using an electronic medical record (EMR). ... high level of EMR usage in an outpatient ...
Breaking Biology News(10 mins):
(Date:10/10/2017)... , Oct. 10, 2017 SomaGenics announced the ... NIH to develop RealSeq®-SC (Single Cell), expected to be ... small RNAs (including microRNAs) from single cells using NGS ... the need to accelerate development of approaches to analyze ... "New techniques for measuring levels of mRNAs ...
(Date:10/10/2017)... ... October 10, 2017 , ... The Pittcon Program ... honoring scientists who have made outstanding contributions to analytical chemistry and ... 2018, the world’s leading conference and exposition for laboratory science, which will be ...
(Date:10/9/2017)... ... , ... The award-winning American Farmer television series will feature 3 Bar Biologics ... at 8:30aET on RFD-TV. , With global population estimates nearing ten billion people ... to feed a growing nation. At the same time, many of our valuable resources ...
(Date:10/9/2017)... ... October 09, 2017 , ... The ... medical marijuana products targeting the needs of consumers who are incorporating medical marijuana ... place in Phoenix, Arizona. , As operators of two successful Valley dispensaries, The ...
Breaking Biology Technology: