Navigation Links
Cells are crawling all over our bodies, but how?
Date:10/18/2011

For better and for worse, human health depends on a cell's motility the ability to crawl from place to place. In every human body, millions of cells are crawling around doing mostly good deeds though if any of those crawlers are cancerous, watch out.

"This is not some horrible sci-fi movie come true but, instead, normal cells carrying out their daily duties," said Florida State University cell biologist Tom Roberts. For 35 years he has studied the mechanical and molecular means by which amorphous single cells purposefully propel themselves throughout the body in amoeboid-like fashion absent muscles, bones or brains.

Meanwhile, human cells don't give up their secrets easily. In the body, they use the millions of tiny filaments found on their front ends to push the front of their cytoskeletons forward. In rapid succession the cells then retract their rears in a smooth, coordinated extension-contraction manner that puts inchworms to shame. Yet take them out of the body and put them under a microscope and the crawling changes or stops.

But now Roberts and his research team have found a novel way around uncooperative human cells.

In a landmark study led by Roberts and conducted in large part by his then-FSU postdoctoral associate Katsuya Shimabukuro, researchers used worm sperm to replicate cell motility in vitro in this case, on a microscope slide.

Doing what no other scientists had ever successfully done before, Shimabukuro disassembled and reconstituted a worm sperm cell, then devised conditions to promote thecell's natural pull-push crawling motions even in the unnatural conditions of a laboratory. Once launched, the reconstituted machinery moved just like regular worm sperm do in a natural setting giving scientists an unprecedented opportunity to watch it move.

Roberts called his former postdoc's signal achievement "careful, clever work" and work it did, making possible new, revealing images of cell motility that should help to pinpoint with never-before-seen precision just how cells crawl.

"Understanding how cells crawl is a big deal," Roberts said. "The first line of defense against invading microorganisms, the remodeling of bones, healing wounds in the skin and reconnecting of neuronal circuits during regeneration of the nervous system all depend on the capacity of specialized cells to crawl.

"On the downside, the ability of tumor cells to crawl around is a contributing factor in the metastasis of malignancies," he said. "But we believe our achievements in this latest round of basic research could eventually aid in the development of therapies that target cell motility in order to interfere with or block the metastasis of cancer."

Funding for Robert's worm-sperm study came from the National Institutes of Health. The findings are described in a paper ("Reconstitution of Amoeboid Motility In Vitro Identifies a Motor-Independent Mechanism for Cell Body Retraction") published online in the journal Current Biology.

Why worm sperm?

For one thing, said Roberts, the worm sperm is different from most cells in that itdoesn't use molecular motor proteins to facilitate its contractions; it shimmies along strictly by putting together and tearing down its tiny filaments. And the simple worm sperm makes a good model because, while it is similar to a human cell it has fewer moving parts, making it less complicated to take apart and reassemble than, say, brain or cancer cells.

Armed with the newfound ability to reconstitute amoeboid motility in vitro, cell biologists such as Roberts may be able to learn the answers to some major moving questions. Among them: How can some cells continue to crawl even after researchers have disabled their supply of myosin, the force-producing "mover protein" that functions like a motor to help power muscle and cell contraction?

For Roberts and his team, the next move will be to determine if what they've learned about worm sperm also applies to more conventional crawling cells, including tumor cells.

"As always, there will be more questions," Roberts said. "Are there multiple mechanisms collaborating to drive cell body retraction? Is there redundancy built into the motility systems?"


'/>"/>

Contact: Thomas A. Roberts
roberts@bio.fsu.edu
850-644-3237
Florida State University
Source:Eurekalert  

Related biology news :

1. Simple nerve cells regulate swimming depth of marine plankton
2. Regenerating eyes using cells from hair: Stem Cells awards research into stem cell deficiency
3. Water channels in the body help cells remain in balance
4. Light can detect pre-cancerous colon cells
5. Seeking superior stem cells
6. Small molecules can starve cancer cells
7. Thin - Film Photovoltaic (PV) Cells Market Analysis to 2020 - CIGS (Copper Indium Gallium Diselenide) to Emerge as the Major Technology by 2020
8. New book on germ cells from Cold Spring Harbor Laboratory Press
9. Carnegie Mellon scientists track neuronal stem cells using MRI
10. Elsevier congratulates editors of Stem Cells: Scientific Facts and Fiction upon receipt of awards
11. Mice stem cells guided into myelinating cells by the trillions
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Cells are crawling all over our bodies, but how?
(Date:3/23/2017)... Research and Markets has announced the addition of the "Global ... 2025" report to their offering. ... The Global Vehicle Anti-Theft System Market is ... next decade to reach approximately $14.21 billion by 2025. ... all the given segments on global as well as regional levels ...
(Date:3/22/2017)... Optimove , provider of the ... as 1-800-Flowers and AdoreMe, today announced two new ... Using Optimove,s machine learning algorithms, these features allow ... recommendations to their customers based not just on ... intent drawn from a complex web of data ...
(Date:3/20/2017)... 20, 2017 At this year,s CeBIT Chancellor Dr. ... manufacturer DERMALOG. The Chancellor came to the DERMALOG stand together with the ... year,s CeBIT partner country. At the largest German biometrics company the two ... face and iris recognition as well as DERMALOG´s multi-biometrics system.   ... ...
Breaking Biology News(10 mins):
(Date:5/19/2017)... ... May 19, 2017 , ... In response to the strong ... Biodex Medical Systems, Inc. announces the release of their Gait Trainer 3 with an ... with a biomedical system to aid in rehabilitating individuals with cerebral palsy, traumatic brain ...
(Date:5/18/2017)... , ... May 18, 2017 , ... ... The Tapas Cooking Challenge is a two-hour team-building package designed for groups ... created by Chef Jodi Abel, which include items, such as Blackened Shrimp with ...
(Date:5/18/2017)... (PRWEB) , ... May 17, ... ... CRO standards with psychonneuroendocrine stress expertise, and further enhances its scientific power ... researcher, Douglas A. Granger, Ph.D., has agreed to join the scientific advisory ...
(Date:5/18/2017)... ... May 17, 2017 , ... ... varying industries, including food and dairy, munitions, and pharmaceutical/biotech, recently introduced The Revolution ... ease of use. The improvement in technology comes on the heels of HOLLOWAY’s ...
Breaking Biology Technology: