Navigation Links
Cells are crawling all over our bodies, but how?
Date:10/18/2011

For better and for worse, human health depends on a cell's motility the ability to crawl from place to place. In every human body, millions of cells are crawling around doing mostly good deeds though if any of those crawlers are cancerous, watch out.

"This is not some horrible sci-fi movie come true but, instead, normal cells carrying out their daily duties," said Florida State University cell biologist Tom Roberts. For 35 years he has studied the mechanical and molecular means by which amorphous single cells purposefully propel themselves throughout the body in amoeboid-like fashion absent muscles, bones or brains.

Meanwhile, human cells don't give up their secrets easily. In the body, they use the millions of tiny filaments found on their front ends to push the front of their cytoskeletons forward. In rapid succession the cells then retract their rears in a smooth, coordinated extension-contraction manner that puts inchworms to shame. Yet take them out of the body and put them under a microscope and the crawling changes or stops.

But now Roberts and his research team have found a novel way around uncooperative human cells.

In a landmark study led by Roberts and conducted in large part by his then-FSU postdoctoral associate Katsuya Shimabukuro, researchers used worm sperm to replicate cell motility in vitro in this case, on a microscope slide.

Doing what no other scientists had ever successfully done before, Shimabukuro disassembled and reconstituted a worm sperm cell, then devised conditions to promote thecell's natural pull-push crawling motions even in the unnatural conditions of a laboratory. Once launched, the reconstituted machinery moved just like regular worm sperm do in a natural setting giving scientists an unprecedented opportunity to watch it move.

Roberts called his former postdoc's signal achievement "careful, clever work" and work it did, making possible new, revealing images of cell motility that should help to pinpoint with never-before-seen precision just how cells crawl.

"Understanding how cells crawl is a big deal," Roberts said. "The first line of defense against invading microorganisms, the remodeling of bones, healing wounds in the skin and reconnecting of neuronal circuits during regeneration of the nervous system all depend on the capacity of specialized cells to crawl.

"On the downside, the ability of tumor cells to crawl around is a contributing factor in the metastasis of malignancies," he said. "But we believe our achievements in this latest round of basic research could eventually aid in the development of therapies that target cell motility in order to interfere with or block the metastasis of cancer."

Funding for Robert's worm-sperm study came from the National Institutes of Health. The findings are described in a paper ("Reconstitution of Amoeboid Motility In Vitro Identifies a Motor-Independent Mechanism for Cell Body Retraction") published online in the journal Current Biology.

Why worm sperm?

For one thing, said Roberts, the worm sperm is different from most cells in that itdoesn't use molecular motor proteins to facilitate its contractions; it shimmies along strictly by putting together and tearing down its tiny filaments. And the simple worm sperm makes a good model because, while it is similar to a human cell it has fewer moving parts, making it less complicated to take apart and reassemble than, say, brain or cancer cells.

Armed with the newfound ability to reconstitute amoeboid motility in vitro, cell biologists such as Roberts may be able to learn the answers to some major moving questions. Among them: How can some cells continue to crawl even after researchers have disabled their supply of myosin, the force-producing "mover protein" that functions like a motor to help power muscle and cell contraction?

For Roberts and his team, the next move will be to determine if what they've learned about worm sperm also applies to more conventional crawling cells, including tumor cells.

"As always, there will be more questions," Roberts said. "Are there multiple mechanisms collaborating to drive cell body retraction? Is there redundancy built into the motility systems?"


'/>"/>

Contact: Thomas A. Roberts
roberts@bio.fsu.edu
850-644-3237
Florida State University
Source:Eurekalert  

Related biology news :

1. Simple nerve cells regulate swimming depth of marine plankton
2. Regenerating eyes using cells from hair: Stem Cells awards research into stem cell deficiency
3. Water channels in the body help cells remain in balance
4. Light can detect pre-cancerous colon cells
5. Seeking superior stem cells
6. Small molecules can starve cancer cells
7. Thin - Film Photovoltaic (PV) Cells Market Analysis to 2020 - CIGS (Copper Indium Gallium Diselenide) to Emerge as the Major Technology by 2020
8. New book on germ cells from Cold Spring Harbor Laboratory Press
9. Carnegie Mellon scientists track neuronal stem cells using MRI
10. Elsevier congratulates editors of Stem Cells: Scientific Facts and Fiction upon receipt of awards
11. Mice stem cells guided into myelinating cells by the trillions
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Cells are crawling all over our bodies, but how?
(Date:4/5/2017)... 2017 KEY FINDINGS The global ... a CAGR of 25.76% during the forecast period of ... factor for the growth of the stem cell market. ... MARKET INSIGHTS The global stem cell market is ... geography. The stem cell market of the product is ...
(Date:3/30/2017)... , March 30, 2017 Trends, opportunities and ... and behavioral), by technology (fingerprint, AFIS, iris recognition, facial ... and others), by end use industry (government and law ... financial and banking, and others), and by region ( ... , Asia Pacific , and the ...
(Date:3/24/2017)... Research and Markets has announced the addition of the "Global ... to 2025" report to their offering. ... The Global Biometric Vehicle Access System Market ... the next decade to reach approximately $1,580 million by 2025. ... for all the given segments on global as well as regional ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... ... October 11, 2017 , ... ... today it will be hosting a Webinar titled, “Pathology is going digital. Is ... , on digital pathology adoption best practices and how Proscia improves lab economics ...
(Date:10/11/2017)... Florida (PRWEB) , ... October 11, 2017 , ... ... Drug Administration (FDA) has granted orphan drug designation to SBT-100, its novel anti-STAT3 ... for the treatment of osteosarcoma. SBT-100 is able to cross the cell membrane ...
(Date:10/10/2017)... research firm Parks Associates announced today that Tom Kerber ... Annual Meeting , October 11 in Scottsdale, Arizona . ... how smart safety and security products impact the competitive landscape. ... Parks Associates: Smart Home Devices: Main Purchase Driver ... "The residential security market has experienced continued growth, and the ...
(Date:10/9/2017)... ... ... The award-winning American Farmer television series will feature 3 Bar Biologics in ... 8:30aET on RFD-TV. , With global population estimates nearing ten billion people by ... feed a growing nation. At the same time, many of our valuable resources are ...
Breaking Biology Technology: