Navigation Links
Cell membranes behave like cornstarch and water
Date:11/3/2010

Mix two parts cornstarch and one part water. Swirl your fingers in it slowly and the mixture is a smoothly flowing liquid. Punch it quickly with your fist and you meet a rubbery solid -- so solid you can jump up and down on a vat of it.

It turns out that cell membranes or, more precisely the two-molecule-thick lipid sheets that form the structural basis of all cellular membranes -- behave the same way, say University of Oregon scientists.

For decades, researchers have been aware that biological membranes are fluid, and that this fluidity is crucial to allowing the motions and interactions of proteins and other cell surface molecules. The new studies, however, reveal that this state is not the simple Newtonian fluidity of familiar liquids like water, but rather it is viscoelastic. At rest the mixture is very fluid, but when quickly perturbed, it bounces back like rubber.

The discovery -- detailed Oct. 25 in the Early Edition of the Proceedings of the National Academy of Sciences -- strikes down the notion that these biologically important membranes are Newtonian fluids that flow regardless of the stress they encounter.

"This changes our whole understanding of what lipid membranes are," said Raghuveer Parthasarathy, a professor of physics and member of the UO's Materials Science Institute and Institute of Molecular Biology. "We may need to rethink our understanding of how all sorts of the mechanical processes that occur in cell membranes work, like how proteins are pulled from one place to another, how cells respond to stretching and other forces, and how membrane-embedded proteins that serve as channels for chemical signals are able to open and close.

"A lot of these mechanical tasks go awry in various diseases for reasons that remain mysterious," he said. "Perhaps a deeper understanding of the mechanical environment that membranes provide will illuminate why biology functions, or fails to function, in the way it does."

In the project, freestanding membranes of lipids -- fatty molecules that form the basis of all cell membranes -- were built with lipid-anchored nanoparticles as tracers that could be observed under high-powered microscopes. Close analysis of the trajectories of these particles allowed researchers to deduce the fluid and elastic properties of the membranes under changing conditions.

Leading the experiments were Christopher W. Harland, who earned a doctorate in physics from the UO last summer and is now a postdoctoral researcher at the University of Chicago, and Miranda J. Bradley, then a visiting undergraduate student from Portland Community College and now at Portland State University. Bradley studied in Parthasarathy's lab as part of the UO's Undergraduate Catalytic Outreach & Research Experiences (UCORE) program.

The importance of membrane fluidity has been recognized for decades, but membranes' strange character as a viscoelastic material has gone unnoticed, said Parthasarathy, who is among UO scientists involved in the Oregon Nanoscience and Microtechnologies Institute (ONAMI). "In retrospect, we shouldn't be surprised. Nature uses viscoelasticity in lots of its other liquids, from mucus to tears. Now we've found that it harnesses viscoelasticity in lipid membranes as well."


'/>"/>

Contact: Jim Barlow
jebarlow@uoregon.edu
541-346-3481
University of Oregon
Source:Eurekalert

Related biology news :

1. New microscopy technique reveals mechanics of blood cell membranes
2. Sticky protein helps reinforce fragile muscle membranes
3. How mitochondria get their membranes bent
4. Phytoplankton cell membranes challenge fundamentals of biochemistry
5. UC research: Rabbits food brings luck in decreasing estrogen levels in wastewater
6. Researchers developing real-time electronic monitoring for coastal waters
7. BOEMRE leads study of deepwater communities post-Deepwater Horizon spill
8. LSUHSC study IDs proteins regulating water retention in salt-sensitive hypertension
9. Everglades show improvement in water quality
10. Shaping the future of the High Plains water supply
11. Florida State study finds watermelon lowers blood pressure
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/22/2017)... 2017 Optimove , provider of ... such as 1-800-Flowers and AdoreMe, today announced two ... Replenishment. Using Optimove,s machine learning algorithms, these features ... replenishment recommendations to their customers based not just ... customer intent drawn from a complex web of ...
(Date:3/13/2017)... March 13, 2017 Future of security: Biometric Face Matching ... ... DERMALOGs Face Matching enables to match face pictures against each ... to identify individuals. (PRNewsFoto/Dermalog Identification Systems) ... DERMALOG,s "Face Matching" is the fastest software for biometric Face Matching on ...
(Date:3/6/2017)... , March 6, 2017 ... sales technology, today announced Predictive Sales Coach TM ... infusing actionable sales intelligence into Salesforce. This unique ... enable their sales organizations with deep knowledge of ... allow for intelligent engagement. Predictive Sales Coach extends ...
Breaking Biology News(10 mins):
(Date:3/23/2017)... , March 23, 2017  SeraCare ... to global in vitro diagnostics manufacturers and ... the industry,s first multiplexed Inherited Cancer ... testing by next-generation sequencing (NGS). The Seraseqâ„¢ ... developed with input from industry experts to ...
(Date:3/23/2017)... 2017 NetworkNewsWire Editorial Coverage  ... Cancer remains one ... on health care systems, in terms of costs and resources. ... does the development of innovative and efficient therapies that demonstrate ... many types of cancer treatments, a growing number of patients ...
(Date:3/22/2017)... 2017 Regeneron Pharmaceuticals, Inc. (NASDAQ: REGN), today announced ... U.K. Biobank and GSK to generate genetic sequence data from ... initiative will enable researchers to gain valuable insights to support ... range of serious and life threatening diseases. ... Genetic evidence has ...
(Date:3/22/2017)... 2017 Oramed Pharmaceuticals Inc. (NASDAQ: ... ), a clinical-stage pharmaceutical company focused ... announced today that Dr. Miriam Kidron , ... titled, "Oral Insulin for Diabetes Treatment: Bypassing the ... and Peptide Therapeutics (OPT) Boston Conference in ...
Breaking Biology Technology: