Navigation Links
Cell death pathway linked to mitochondrial fusion
Date:1/24/2011

New research led by UC Davis scientists provides insight into why some body organs are more susceptible to cell death than others and could eventually lead to advances in treating or preventing heart attack or stroke.

In a paper published Jan. 21 in the journal Molecular Cell, the UC Davis team and their collaborators at the National Institutes of Health and Johns Hopkins University report that Bax, a factor known to promote cell death, is also involved in regulating the behavior of mitochondria, the structures that provide energy inside living cells.

Mitochondria constantly split and fuse. The proteins that control the splitting of mitochondria also promote a process called apoptosis, or programmed cell death. In contrast, the proteins that control mitochondrial fusion help protect against cell death. Cell death can happen when cells are starved of oxygen, for example during a heart attack or stroke.

Yeast have a single protein that controls outer membrane fusion, but both human and mouse cells have two proteins, called MFN1 and MFN2, which control outer membrane fusion. Using mitochondria from cells derived from genetically modified "knockout" mice, Suzanne Hoppins, a postdoctoral researcher at UC Davis, and Jodi Nunnari, a professor of molecular cell biology, studied how these two proteins work together and the role specific genes play in that process.

The research team discovered that these proteins combine with themselves or each other to form a tether between two mitochondria, leading to fusion. All three combinations -- MFN1/MFN1, MFN1/MFN2 and MFN2/MFN2 -- can promote membrane fusion, but the combination of MFN1/MFN2 is by far the most efficient, Hoppins said.

Hoppins also found that a soluble form of Bax, a protein that triggers apoptosis, can also stimulate mitochondria to fuse. It acts only through the MFN2/MFN2 combination, she found.

The form of Bax that promotes mitochondrial fusion is different from the type that leads to cell death, Nunnari said. Bax leads to cell death when it inserts itself in the mitochondrial membrane. In its soluble, free-floating form, it causes mitochondria to fuse instead.

MFN1 and MFN2 are found in different amounts in different body organs. MFN2 is more abundant in the brain and heart -- tissues where cell death can have disastrous consequences.

The paper shows how MFN2 could act to protect the brain or heart from cell death, by using Bax in a different form, Nunnari said.

"This shows that the fusion machine is both positively and negatively regulated in cells and opens doors to finding the regulatory mechanisms and discovering ways to increase or decrease the sensitivity of cells to apoptosis," Hoppins said. That could lead to new drugs that save cells, for heart disease and stroke, or that kill cells, for cancer.


'/>"/>

Contact: Andy Fell
ahfell@ucdavis.edu
530-752-4533
University of California - Davis
Source:Eurekalert

Related biology news :

1. Breast cancer cells recycle to escape death by hormonal therapy
2. Genes that control cell death fingered in age-related hearing loss
3. Caltech geobiologists discover unique magnetic death star fossil
4. Forced evolution: Can we mutate viruses to death?
5. Drops in blood oxygen levels may be key to sudden death in some epilepsy patients
6. New technology aims to reduce maternal and neonatal deaths
7. Fewer deaths with preventive antibiotic use
8. Burnham researchers discover on switch for cell death signaling mechanism
9. Study helps explain connection between sleep apnea, stroke and death
10. Stroke Belt deaths tied to non-traditional risk factors
11. Jefferson scientists discover a key protein regulator of inflammation and cell death
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/11/2017)... April 11, 2017 NXT-ID, Inc. (NASDAQ: ... company, announces the appointment of independent Directors Mr. Robin ... its Board of Directors, furthering the company,s corporate governance and ... Gino Pereira ... look forward to their guidance and benefiting from their considerable ...
(Date:4/5/2017)... , April 5, 2017  The Allen Institute ... Allen Cell Explorer: a one-of-a-kind portal and dynamic digital ... 3D imaging data, the first application of deep learning ... human stem cell lines and a growing suite of ... platform for these and future publicly available resources created ...
(Date:4/5/2017)... April 4, 2017 KEY FINDINGS ... expand at a CAGR of 25.76% during the forecast ... the primary factor for the growth of the stem ... https://www.reportbuyer.com/product/4807905/ MARKET INSIGHTS The global stem cell ... application, and geography. The stem cell market of the ...
Breaking Biology News(10 mins):
(Date:10/7/2017)... ... October 06, 2017 , ... Phase ... metagenome deconvolution product, featuring the first commercially available Hi-C kit. Researchers can ... Hi-C metagenome deconvolution using their own facilities, supplementing the company’s full-service ProxiMeta ...
(Date:10/6/2017)... (PRWEB) , ... October 06, 2017 , ... ... entrepreneurship within the healthcare and technology sector at their fourth annual Conference where ... featuring 30 inspiring speakers and the ELEVATE pitch competition showcasing early stage digital ...
(Date:10/5/2017)... ... October 05, 2017 , ... LabRoots , the leading ... around the world, is giving back to cancer research with a month-long promotion supporting ... Now through October 31, shoppers can use promo code PinkRibbon to get 10 percent ...
(Date:10/5/2017)... ... October 05, 2017 , ... NIH has awarded Circulomics two ... DNA/RNA extraction technology . Nanobind is a novel magnetic disk that contains a ... be used for a wide variety of sample preparation applications. The nanostructured surface ...
Breaking Biology Technology: