Navigation Links
Cell death pathway linked to mitochondrial fusion
Date:1/24/2011

New research led by UC Davis scientists provides insight into why some body organs are more susceptible to cell death than others and could eventually lead to advances in treating or preventing heart attack or stroke.

In a paper published Jan. 21 in the journal Molecular Cell, the UC Davis team and their collaborators at the National Institutes of Health and Johns Hopkins University report that Bax, a factor known to promote cell death, is also involved in regulating the behavior of mitochondria, the structures that provide energy inside living cells.

Mitochondria constantly split and fuse. The proteins that control the splitting of mitochondria also promote a process called apoptosis, or programmed cell death. In contrast, the proteins that control mitochondrial fusion help protect against cell death. Cell death can happen when cells are starved of oxygen, for example during a heart attack or stroke.

Yeast have a single protein that controls outer membrane fusion, but both human and mouse cells have two proteins, called MFN1 and MFN2, which control outer membrane fusion. Using mitochondria from cells derived from genetically modified "knockout" mice, Suzanne Hoppins, a postdoctoral researcher at UC Davis, and Jodi Nunnari, a professor of molecular cell biology, studied how these two proteins work together and the role specific genes play in that process.

The research team discovered that these proteins combine with themselves or each other to form a tether between two mitochondria, leading to fusion. All three combinations -- MFN1/MFN1, MFN1/MFN2 and MFN2/MFN2 -- can promote membrane fusion, but the combination of MFN1/MFN2 is by far the most efficient, Hoppins said.

Hoppins also found that a soluble form of Bax, a protein that triggers apoptosis, can also stimulate mitochondria to fuse. It acts only through the MFN2/MFN2 combination, she found.

The form of Bax that promotes mitochondrial fusion is different from the type that leads to cell death, Nunnari said. Bax leads to cell death when it inserts itself in the mitochondrial membrane. In its soluble, free-floating form, it causes mitochondria to fuse instead.

MFN1 and MFN2 are found in different amounts in different body organs. MFN2 is more abundant in the brain and heart -- tissues where cell death can have disastrous consequences.

The paper shows how MFN2 could act to protect the brain or heart from cell death, by using Bax in a different form, Nunnari said.

"This shows that the fusion machine is both positively and negatively regulated in cells and opens doors to finding the regulatory mechanisms and discovering ways to increase or decrease the sensitivity of cells to apoptosis," Hoppins said. That could lead to new drugs that save cells, for heart disease and stroke, or that kill cells, for cancer.


'/>"/>

Contact: Andy Fell
ahfell@ucdavis.edu
530-752-4533
University of California - Davis
Source:Eurekalert

Related biology news :

1. Breast cancer cells recycle to escape death by hormonal therapy
2. Genes that control cell death fingered in age-related hearing loss
3. Caltech geobiologists discover unique magnetic death star fossil
4. Forced evolution: Can we mutate viruses to death?
5. Drops in blood oxygen levels may be key to sudden death in some epilepsy patients
6. New technology aims to reduce maternal and neonatal deaths
7. Fewer deaths with preventive antibiotic use
8. Burnham researchers discover on switch for cell death signaling mechanism
9. Study helps explain connection between sleep apnea, stroke and death
10. Stroke Belt deaths tied to non-traditional risk factors
11. Jefferson scientists discover a key protein regulator of inflammation and cell death
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/7/2017)... Minn. , Feb. 7, 2017   MedNet ... supports the entire spectrum of clinical research, is pleased ... iMedNet , its innovative, highly flexible and award ... iMedNet customers. iMedNet is a proven ... provides Electronic Data Capture (EDC), but also delivers an ...
(Date:2/3/2017)... Feb. 3, 2017 A new independent identity ... Partners, LLP (IdSP) . Designed to fill a critical ... identity market, founding partners Mark Crego and ... years just in identity expertise that span federal governments, ... leadership. The Crego-Kephart combined expertise has a common theme ...
(Date:1/31/2017)... , Jan. 31, 2017  Spero Therapeutics, ... therapies for the treatment of bacterial infections, today ... of antibacterial candidates from Pro Bono Bio Ltd ... prevalence of multi-drug resistant forms of Gram-negative bacteria.  ... Anti Infectives Ltd, a PBB group company. ...
Breaking Biology News(10 mins):
(Date:2/16/2017)... 2017 Research and Markets has ... Markets" report to their offering. ... The ... parts, delivery plasmids, chassis organisms, synthetic cells, production systems), ... editing, bioinformatics and specialty media) and enabled technologies (biofuels, ...
(Date:2/16/2017)... , February 16, 2017 ... the infusion of innovative telemedicine application, new and ... that are experiencing a boom worldwide. The healthcare ... advancement of technologies, services and new therapies for ... RQHTF) (TSX-V: RHT), Cellectar Biosciences, Inc. (NASDAQ: ...
(Date:2/16/2017)... , Feb. 16, 2017  Champions Oncology, Inc. (NASDAQ: ... development and sale of advanced technology solutions and products ... today announced the addition of new cohorts of PDX ... new models will expand Champions, product line in hepatocellular ... neck cancer, AML, and non-small cell lung cancer (including ...
(Date:2/16/2017)... , Feb. 16, 2017  Rhythm, ... rare genetic deficiencies that result in life-threatening ... a $41 million mezzanine round of financing ... OrbiMed, MPM Capital, New Enterprise Associates, Pfizer ... undisclosed public healthcare investment fund. Rhythm will ...
Breaking Biology Technology: