Navigation Links
Cell-building discovery could reduce need for some animal research
Date:2/2/2009

PROVIDENCE, R.I. [Brown University] Brown University biomedical engineers can now grow and assemble living microtissues into complex three-dimensional structures in a way that will advance the field of tissue engineering and may eventually reduce the need for certain kinds of animal research.

The team, led by Brown professor Jeffrey Morgan, successfully used clusters of cells grown in a 3-D Petri dish also invented by the group, in order to build microtissues of more complex shapes.

Such a finding, detailed in the March 1 issue of Biotechnology and Bioengineering and posted at the end of January on the journal's Web site, has enormous implications for basic cell biology, drug discovery and tissue research, Morgan said.

Because the tissues Morgan's team created in the lab are more like natural tissue, they can be constructed to have complex lace-like patterns similar to a vasculature, the arrangement of blood vessels in the body or in an organ. Morgan said that added complexity could eventually reduce the need to use animals in certain kinds of research. The National Science Foundation and the International Foundation for Ethical Research funded the study, with the latter group's mission focused in part on reducing the use of animals in research.

"There is a need for tissue models that more closely mimic natural tissue already inside the body in terms of function and architecture," said Morgan, a Brown professor of medical science and engineering. "This shows we can control the size, shape and position of cells within these 3-D structures."

But Morgan said the finding also makes an important contribution to the field of tissue engineering and regenerative medicine.

"We think this is one step toward using building blocks to build complex-shaped tissues that might one day be transplanted," he said.

The new finding builds on earlier work by Morgan and a team of Brown students, which appeared in September 2007 in the journal Tissue Engineering. The earlier study highlighted the invention of a 3-D Petri dish about the size of a peanut-butter cup and made of agarose, a complex carbohydrate derived from seaweed with the consistency of Jell-O. Morgan and students in his lab developed the dish, creating a product where cells do not stick to the surface. Instead, the cells self-assemble naturally and form "microtissues."

For the new research, Morgan, with students including Adam Rago and Dylan Dean, made 3-D microtissues in one 3-D Petri dish, harvested these living building blocks and then added them to more complex 3-D molds shaped either like a honeycomb, with holes, or a donut with a hole in the middle.

Those skin cells fused with liver cells in the more complex molds and formed even larger microstructures. Researchers found that the molds helped control the shape of the final microtissue.

They also found that they could control the rate of fusion of the cells by aging them for a longer or shorter time before they were harvested. The longer the wait, Morgan found, the slower the process.

Rago has since graduated from Brown, and Dean, an M.D.-Ph.D. student, has moved on from the Morgan lab to pursue his surgical rotations.


'/>"/>

Contact: Mark Hollmer
Mark_Hollmer@brown.edu
401-863-1862
Brown University
Source:Eurekalert  

Related biology news :

1. New discovery may lead to new class of allergy drugs
2. Discovery could lead to a new animal model for hepatitis C
3. Billion-year revision of plant evolution timeline may stem from discovery of lignin in seaweed
4. Cancer-causing gene discovery suggests new therapies
5. Jumbo-sized discovery made in Malaysia
6. UC Davis discovery offers hope for treating kidney cancer
7. Life Sciences Discovery Fund awards health research program grants
8. In just 5 years, gene discovery to clinical trial of potential treatment
9. Discovery of new gene associated with diabetes risk suggests link with body clock
10. Kidney function discovery sheds light on genetic complexity of disease
11. New discovery may enhance MRI scans, lead to portable MRI machines
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Cell-building discovery could reduce need for some animal research
(Date:1/6/2017)... JOLLA, Calif. , Jan. 6, 2017 /PRNewswire/ ... 1 safety studies in healthy volunteers of a ... intended to treat acute pancreatitis. ... is typically a mild disorder, but can be ... organ failure and sepsis, where extended hospital stays, ...
(Date:1/3/2017)... , Jan. 3, 2017 Onitor, provider ... introduction of Onitor Track, an innovative biometric data-driven program ... showcasing this month at the 2017 Consumer Electronics Show ... In the U.S., the World Health Organization ... than two-thirds of adults who are overweight or obese. ...
(Date:12/19/2016)... BARCELONA , España y TORONTO , 19 ... fusión con Northern Biologics Inc. que permitirá el desarrollo acelerado de ... ensayos clínicos en varios tipos de tumor en 2017, con múltiples ... ... de su clase con objetivo en el factor inhibidor de leucemia ...
Breaking Biology News(10 mins):
(Date:1/18/2017)... CAMBRIDGE, Mass. , Jan. 18, 2017   ... of novel compounds designed to target cancer stemness pathways, ... lead investigational compound, napabucasin, at the 2017 ASCO Gastrointestinal ... San Francisco . Napabucasin is ... pathways by targeting STAT3. i Cancer stem cells ...
(Date:1/18/2017)... ... January 18, 2017 , ... Total Orthopedics and Sports ... A-CIFT™ Solofuse-P™. The operation took place on Wednesday, January 11, 2017 at Long ... an anterior cervical discectomy and fusion on a 42 year old female who ...
(Date:1/18/2017)... ... ... from a new study are stating that if levels of the blood test called ... there is still remaining prostate cancer cells that are more likely to come back, spreading ... an indicator of whether a man’s prostate cancer is growing or not,” stated Dr. ...
(Date:1/18/2017)... , ... January 18, 2017 , ... Thirty-six startup companies ... credits by the Pennsylvania Department of Community and Economic Development in 2016 as part ... located in the University City Keystone Innovation Zone and represent the highest number of ...
Breaking Biology Technology: