Navigation Links
Cell-building discovery could reduce need for some animal research
Date:2/2/2009

PROVIDENCE, R.I. [Brown University] Brown University biomedical engineers can now grow and assemble living microtissues into complex three-dimensional structures in a way that will advance the field of tissue engineering and may eventually reduce the need for certain kinds of animal research.

The team, led by Brown professor Jeffrey Morgan, successfully used clusters of cells grown in a 3-D Petri dish also invented by the group, in order to build microtissues of more complex shapes.

Such a finding, detailed in the March 1 issue of Biotechnology and Bioengineering and posted at the end of January on the journal's Web site, has enormous implications for basic cell biology, drug discovery and tissue research, Morgan said.

Because the tissues Morgan's team created in the lab are more like natural tissue, they can be constructed to have complex lace-like patterns similar to a vasculature, the arrangement of blood vessels in the body or in an organ. Morgan said that added complexity could eventually reduce the need to use animals in certain kinds of research. The National Science Foundation and the International Foundation for Ethical Research funded the study, with the latter group's mission focused in part on reducing the use of animals in research.

"There is a need for tissue models that more closely mimic natural tissue already inside the body in terms of function and architecture," said Morgan, a Brown professor of medical science and engineering. "This shows we can control the size, shape and position of cells within these 3-D structures."

But Morgan said the finding also makes an important contribution to the field of tissue engineering and regenerative medicine.

"We think this is one step toward using building blocks to build complex-shaped tissues that might one day be transplanted," he said.

The new finding builds on earlier work by Morgan and a team of Brown students, which appeared in September 2007 in the journal Tissue Engineering. The earlier study highlighted the invention of a 3-D Petri dish about the size of a peanut-butter cup and made of agarose, a complex carbohydrate derived from seaweed with the consistency of Jell-O. Morgan and students in his lab developed the dish, creating a product where cells do not stick to the surface. Instead, the cells self-assemble naturally and form "microtissues."

For the new research, Morgan, with students including Adam Rago and Dylan Dean, made 3-D microtissues in one 3-D Petri dish, harvested these living building blocks and then added them to more complex 3-D molds shaped either like a honeycomb, with holes, or a donut with a hole in the middle.

Those skin cells fused with liver cells in the more complex molds and formed even larger microstructures. Researchers found that the molds helped control the shape of the final microtissue.

They also found that they could control the rate of fusion of the cells by aging them for a longer or shorter time before they were harvested. The longer the wait, Morgan found, the slower the process.

Rago has since graduated from Brown, and Dean, an M.D.-Ph.D. student, has moved on from the Morgan lab to pursue his surgical rotations.


'/>"/>

Contact: Mark Hollmer
Mark_Hollmer@brown.edu
401-863-1862
Brown University
Source:Eurekalert  

Related biology news :

1. New discovery may lead to new class of allergy drugs
2. Discovery could lead to a new animal model for hepatitis C
3. Billion-year revision of plant evolution timeline may stem from discovery of lignin in seaweed
4. Cancer-causing gene discovery suggests new therapies
5. Jumbo-sized discovery made in Malaysia
6. UC Davis discovery offers hope for treating kidney cancer
7. Life Sciences Discovery Fund awards health research program grants
8. In just 5 years, gene discovery to clinical trial of potential treatment
9. Discovery of new gene associated with diabetes risk suggests link with body clock
10. Kidney function discovery sheds light on genetic complexity of disease
11. New discovery may enhance MRI scans, lead to portable MRI machines
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Cell-building discovery could reduce need for some animal research
(Date:4/11/2017)... 11, 2017 Crossmatch®, a globally-recognized leader ... today announced that it has been awarded a ... Activity (IARPA) to develop next-generation Presentation Attack Detection ... "Innovation has been a driving force within Crossmatch ... allow us to innovate and develop new technologies ...
(Date:4/5/2017)... , April 5, 2017  The Allen Institute ... Allen Cell Explorer: a one-of-a-kind portal and dynamic digital ... 3D imaging data, the first application of deep learning ... human stem cell lines and a growing suite of ... platform for these and future publicly available resources created ...
(Date:3/30/2017)... LOS ANGELES , March 30, 2017  On ... Hack the Genome hackathon at ... This exciting two-day competition will focus on developing health ... experience. Hack the Genome is ... has been tremendous. The world,s largest companies in the ...
Breaking Biology News(10 mins):
(Date:5/23/2017)... ... 23, 2017 , ... Genedata, a leading provider of advanced ... with a strong presence at Bio-IT World Conference & Expo 2017 in Boston, ... to all attendees to view posters on the entire range of Genedata ...
(Date:5/23/2017)... ... May 23, 2017 , ... Energetiq Technology, ... announced a facility expansion to accommodate its rapid growth. , The renovations at ... and renovation of the existing areas. The expansion includes, a state-of-the-art engineering facility, ...
(Date:5/23/2017)... Greifensee, Switzerland (PRWEB) , ... May 23, 2017 ... ... which forces machine manufacturers to re-engineer their control technology again and again. METTLER ... common problem for machine manufacturers. The videos illustrate how integration of the ACT350 ...
(Date:5/21/2017)... , ... May 19, 2017 , ... ... and educational conference of the American Association of Bioanalysts (AAB) and the College ... in Houston. The conference reinforces AAB’s commitment to excellence in clinical laboratory services ...
Breaking Biology Technology: