Navigation Links
Cataloguing invisible life: Microbe genome emerges from lake sediment
Date:8/17/2008

When entrepreneurial geneticist Craig Venter sailed around the world on his yacht sequencing samples of seawater, it was an ambitious project to use genetics to understand invisible ecological communities. But his scientific legacy was disappointing a jumble of mystery DNA fragments belonging to thousands of unknown organisms.

Now a team led by a University of Washington scientist has studied lake mud, which contains microbial communities even more complex than those in seawater, and homed in on bacteria that perform the ecological task of eating methane. The study, published Sunday (Aug. 17) in the journal Nature Biotechnology, shows a way to sequence unidentified life.

"This work demonstrates that we can get a complete genome for a totally unknown organism," said lead author Ludmila Chistoserdova, a UW research scientist in chemical engineering. "We extracted a complete genome from a very complex community, and this is something novel."

Only 1 percent of microbes survive in the laboratory, Chistoserdova said, and the remaining 99 percent are undiscovered. Genetics can bypass the laboratory to help reveal microscopic communities, but most genetic tools use short stretches of known genetic code. Researchers look for these short stretches and copy, or amplify, them from the environment.

"You can only use amplification when you know what you're trying to get. And that's the problem," Chistoserdova said. "When you want to discover something unknown, amplification is a very deficient technique because you keep discovering the things you already know. So how can you discover the unknown?"

The researchers targeted a particular ecological function, in this case eating single-carbon compounds such as methane. First they collected samples of mud from the bottom of Lake Washington, a typical freshwater lake of moderate temperature and average levels of compounds such as methane, produced by decomposing organisms, in the sediment. Then they mixed the mud with five different samples of food labeled with carbon-13, a heavier isotope of carbon. Over time, organisms that ate the lab food incorporated the heavy carbon into their cells and their DNA. For five different single-carbon food sources, the scientists then separated the DNA by weight, knowing that the heavier pieces must belong to organisms that ate the lab-catered food.

Chistoserdova estimates the original mud sample contained about 5,000 different microbes, but the five batches of enriched DNA each contained only a dozen or so organisms. Researchers then were able to piece together carbon-13 DNA fragments to create one entire genome for Methylotenera mobilis, a microbe that eats methylamine, a form of ammonia. (This microbe was already known, though the team did not use that knowledge to create the sequence.) They also produced a partial genome for Methylobacter tundripaludum, a methane-eating microbe that so far resists cultivation in the lab.

The project was funded by the National Science Foundation and the Department of Energy.

Discovering an organism's entire genetic sequence has many uses. For example, the genetic code may produce clues for growing the microbe in the lab, which would allow scientists to study it and perhaps harness it for practical applications. Other research groups could look for the DNA in the environment as a telltale sign that the same microbe is present elsewhere. And knowing the identity of the most ecologically important organisms would help understand ecological cycles and monitor microbial population shifts, for instance due to climate change.

Chistoserdova's team was looking at methylotrophs, organisms that eat single-carbon compounds. Methane in the atmosphere, generated by decomposing plants and animals, is a greenhouse gas 25 times more potent than carbon dioxide. Unseen methylotrophs on land and in water keep the amount of methane reaching the atmosphere in check.

"These are the bacteria that maintain the Earth's health. Some of the methane escapes in some parts of the lake you can see the bubbles. But whatever doesn't escape as bubbles, these bacteria do a very good job of eating it," Chistoserdova said.

Her group will continue to study the role of methane-eating freshwater bacteria.


'/>"/>

Contact: Hannah Hickey
hickeyh@u.washington.edu
206-543-2580
University of Washington
Source:Eurekalert  

Related biology news :

1. Invisible bacteria dupe the human immune system
2. Eat chocolate, drink wine, add fun to life: SLU geriatrician shares secrets of staying young
3. Variety is the spice of life: too many males, too little time...
4. Hungry microbes share out the carbon in the roots of plants
5. Microbes churn out hydrogen at record rate
6. Cosmopolitan microbes -- hitchhikers on Darwins dust
7. Scientists melt million-year-old ice in search of ancient microbes
8. Methane from microbes: a fuel for the future
9. Nitrous oxide from ocean microbes
10. Elevated carbon dioxide changes soil microbe mix below plants
11. Paired microbes eliminate methane using sulfur pathway
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Cataloguing invisible life: Microbe genome emerges from lake sediment
(Date:1/11/2017)... Jan. 11, 2017  Michael Johnson, co-founder of Visikol Inc. a ... Inc., has been named to the elite "Forbes 30 Under 30" ... of 600 people in 20 fields nationwide to be recognized as ... 15,000 applicants were selected. ... He is currently a PhD candidate at Rutgers University. ...
(Date:1/4/2017)... LAS VEGAS , Jan. 4, 2017  For the thousands of ... , a global leader in connected health and biometric measurement devices and ... pressure monitors. On display in A&D Medical,s special CES ... monitors represent the ongoing expansion of the company,s WellnessConnected product ... ...
(Date:12/22/2016)... December 22, 2016 SuperCom (NASDAQ: ... solutions for the e-Government, Public Safety, HealthCare, and Finance sectors announced ... has been selected to implement and deploy a community-based supportive services ... Northern California , further expanding its presence in the state. ... This new program, ...
Breaking Biology News(10 mins):
(Date:1/18/2017)... ... 18, 2017 , ... MYOLYN, which creates medical technology for ... 510(k) to the FDA, requesting clearance of the MyoCycle Home and the MyoCycle ... , The submission marks a major milestone for the technology startup. MYOLYN ...
(Date:1/18/2017)... ... January 18, 2017 , ... uBiome, the leading ... by its Science Editor, Dr. Elisabeth Bik, in the December 2016 issue of ... joined uBiome in October 2016 from her previous position at Stanford University School ...
(Date:1/18/2017)... , Jan. 18, 2017  Caris Life Sciences, ... Lustgarten Foundation, the largest private funder of pancreatic ... trial evaluating the impact of immunotherapy in the ... trial enrollment services to identify potential trial candidates ... between treating physicians and study investigators. The Lustgarten ...
(Date:1/17/2017)... IA (PRWEB) , ... January 17, 2017 , ... ... China for Balance™ GT soybeans. The new Balance™ GT Soybean Performance System will ... glyphosate and isoxaflutole, the active ingredient in the new Balance® Bean herbicide. The ...
Breaking Biology Technology: