Navigation Links
Carnegie Mellon scientists discover how molecular motors go into 'energy save mode'
Date:8/11/2011

PITTSBURGHThe transport system inside living cells is a well-oiled machine with tiny protein motors hauling chromosomes, neurotransmitters and other vital cargo around the cell. These molecular motors are responsible for a variety of critical transport jobs, but they are not always on the go. They can put themselves into "energy save mode" to conserve cellular fuel and, as a consequence, control what gets moved around the cell, and when.

A new study from Carnegie Mellon University and the Beatson Institute for Cancer Research published in the Aug. 12 issue of Science describes how the motors fold in on themselves, or save energy, when their transport services aren't required. According to the researchers, the solution to this molecular puzzle provides new insight into how molecular motor proteins are regulated, and may open new avenues for the treatment of various neurodegenerative diseases, such as Alzheimer's and Huntington's.

"Molecular motor proteins play a major role in all eukaryotic cells, but they are particularly critical to nerve cells," said David Hackney, professor of biological sciences in the Mellon College of Science, and one of the paper's authors. "Nerve cells have this special problem where proteins, such as receptors for neurotransmitters, get synthesized in the cell body and have to be shipped all the way down the axon. Problems in this transport system may play a role in a number of neurological conditions."

Hackney focuses his research on kinesin-1, the principle motor protein that moves cargo from the nerve cell body down the axon. A typical kinesin molecule has two tails on one end that attach to the cargo and two globular heads on the other end that crank along fibers inside the cell called microtubules, pulling the cargo forward. The movement of the heads, or motor domains, is fueled by the breakdown of ATP, a molecule that stores the energy that drives cellular work. When cargo isn't attached, kinesin folds in upon itself to prevent ATP from being squandered. Although scientists knew that one tail binds to the two heads to keep it in a folded "autoinhibited" state, the molecular mechanism remains unclear. Several possibilities have been proposed, but these latest findings suggest only one solution.

Hackney worked with Hung Yi Kristal Kaan and Frank Kozielski at the Beatson Institute for Cancer Research in Glasgow, Scotland, who crystallized a key portion of the kinesin molecule a tail that was bound to the heads. The crystal structure confirmed that the complex contained two head domains and only one tail domain. Hackney then carried out biochemical manipulations to determine precisely how the tail interacts with the heads, which turned out to be what the authors refer to as a "double lockdown."

"It was actually a big surprise," Hackney said, "because it ruled out all of the obvious things that had been proposed for how the tail domain autoinhibits the motor domain. It does not cause a conformational change, and it does not block the surfaces that interact with ATP or the microtubular track."

Kinesin's heads are typically joined together at one spot, called the hinge. In the new structure, the heads swing in toward each other and are bridged by the tail domain, effectively cross-linking the heads at the site of tail binding. This double lockdown at the hinge and at the bridge prevents the heads from separating. Because the heads need to be separate from each other to break down ATP, the double lockdown effectively stops the molecule from generating fuel to power the motor.

The researchers suggest that other kinesins may be regulated by the same autoinhibitory mechanism. Humans have dozens of different kinesin motors that transport a variety of cargo, including proteins associated with Alzheimer's, Huntington's and Parkinson's diseases. Kinesins are also involved in separating chromosomes during cell division, making the motors a target for cancer therapies that seek to stop the motors from transporting chromosomes, which would prevent cancer cells from multiplying.


'/>"/>

Contact: Jocelyn Duffy
jhduffy@andrew.cmu.edu
412-268-9982
Carnegie Mellon University
Source:Eurekalert  

Related biology news :

1. Carnegie Mellons Matyjaszewski to receive Wolf Prize in Chemistry
2. Carnegie Mellon researchers identify Facebook neurons
3. Carnegie Mellon researchers discover mechanism for signaling receptor recycling
4. Carnegie Mellon receives funding to create new program studying environmental impact of nanotechnology
5. Carnegie Mellon hosting first conference to explore scientific use of gigapixel imagery
6. Neuronal diversity makes a difference, says Carnegie Mellon study
7. Carnegie Mellon researchers turn up brightness on fluorescent probes
8. Carnegie Mellons Yoed Rabin receives grants
9. Carnegie Mellon researchers create fluorescent biosensor to aid in drug development
10. Carnegies Doug Koshland elected to National Academy of Sciences
11. Carnegies Chris Field elected to American Academy of Arts & Sciences
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Carnegie Mellon scientists discover how molecular motors go into 'energy save mode'
(Date:6/23/2017)... ITHACA, N.Y. , June 23, 2017  IBM ... in dairy research, today announced a new collaboration using ... the chances that the global milk supply is impacted ... project, Cornell University has become the newest academic institution ... Chain, a food safety initiative that includes IBM Research, ...
(Date:5/23/2017)... -- Hunova, the first robotic gym for the rehabilitation and functional motor sense ... Genoa, Italy . The first 30 robots will be available ... USA . The technology was developed and patented at the IIT ... Movendo Technology thanks to a 10 million euro investment from entrepreneur Sergio ... ...
(Date:5/16/2017)... DALLAS , May 16, 2017   ... for health organizations, and MD EMR Systems ... certified development partner for GE, have established a ... Patient Portal product and the GE Centricity™ products, ... Centricity EMR. These new integrations ...
Breaking Biology News(10 mins):
(Date:9/21/2017)... Norwood, MA (PRWEB) , ... September 21, 2017 ... ... its proprietary clinical client portal. Each relaunch of the portal includes new features ... biotechnology and medical device companies seek to remain at the forefront of medical ...
(Date:9/21/2017)... , ... September 21, 2017 , ... ... neon green this month, the response was swift and efficient thanks to the ... ). RRWQG is made up of more than 50 stakeholders, including officials from ...
(Date:9/20/2017)... ... September 20, 2017 , ... The award-winning producers ... (Koch) to feature new innovations aimed at helping farmers solve the problem of ... Farmer airs Tuesdays at 8:30aET on RFD-TV. Check your local listings for more ...
(Date:9/20/2017)... , ... September 20, 2017 ... ... a leading global provider of engineering, architecture, project controls, construction management, commissioning ... cleanrooms, today announced the unveiling of the iCON™ brand which represents the ...
Breaking Biology Technology: