Navigation Links
Carnegie Mellon researchers to develop probes to study cellular GPS
Date:11/10/2009

PITTSBURGHAn international group of researchers from Carnegie Mellon University, Goettingen Medical School in Germany and the University of Cambridge in the United Kingdom have received a Human Frontiers Science Program (HFSP) grant to develop molecular probes that will help researchers better understand the "cellular GPS" system that guides neurons to create a properly wired nervous system.

In the course of the development and repair of the nervous system, nerve cells, also called neurons, seek to find other specific nerve cells with which they connect to form a synapse. At the synapse, information is passed from cell to cell via electric impulses, underlying the nervous system's essential processes like perception and thought.

"A human has 100 billion neurons, and each of those neurons makes between 1,000 and 30,000 very specific connections. If those billions of neurons were randomly connecting, it wouldn't work the number of connections would get too big and the nervous system would be horribly mis-wired," said Marcel Bruchez, associate research professor of chemistry and program manager of Carnegie Mellon's Molecular Biosensor and Imaging Center. "Neurons have a very well-defined map to follow for finding the right connections, but we don't understand how they read this map."

Leading the nerve cells to their specific targets are growth cones, specialized structures within the tip of the neuron's axon. Within each growth cone is a tiny molecular navigational system that guides the nerve cell down a winding path while sensing the cellular terrain, allowing the cell to find its synaptic target.

"Everything a growth cone needs to find its neuron's connection exists inside the growth cone. It doesn't need to communicate with the nucleus, which is what we always think of as the cell's brain," Bruchez said. "The growth cone is autonomous, like a robot or GPS system that reads the map and decides the direction in which the neuron should go."

Bruchez and colleagues, which include Fred Wouters from the Goettingen Medical School and Christine Holt from the University of Cambridge, believe that the growth cone makes decisions through a combination of integrated molecular cues. However, since the growth cone is so small and only contains a small fraction of the nerve cell's content, it has been difficult to study the molecular processes at play in neuronal navigation. Traditionally to see such processes, researchers would load the growth cone with dyes that would make the cellular actions visible under a microscope, but introducing large amounts of dye to this limited cellular environment would disturb cellular function.

Through the HFSP-supported project Bruchez and colleagues will attempt to develop a sensitive set of probes that will report on the molecular activities at the growth cone including protein synthesis, protein degradation and protein folding. If successful, the probes could yield vital information about how the nervous system develops and repairs.


'/>"/>

Contact: Jocelyn Duffy
jhduffy@andrew.cmu.edu
412-268-9982
Carnegie Mellon University
Source:Eurekalert

Related biology news :

1. Carnegie Mellon scientists develop nanogels that enable controlled delivery of carbohydrate drugs
2. Carnegie Mellon scientists investigate initial molecular mechanism that triggers neuronal firing
3. Carnegie Mellon scientist uses mass spectrometer to weigh virus particle, von Willebrand factor
4. Carnegie Mellon, Pitt Team to study psychosocial stress
5. Mellon awards Carnegie Grant for Ecological Monitoring in South Africa
6. Carnegie Mellon researchers to develop new drug delivery system
7. Carnegie Mellon students win contest
8. Novel mechanism for long-term learning identified by Carnegie Mellon researchers
9. U. Mass Medical School and Carnegie announce licensing agreements with Oxford BioMedica
10. Carnegie Mellon scientists develop fluorescent proteins for live cell imaging, biosensor design
11. Carnegie Mellon receives $1.85 million
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/9/2017)... , March 9, 2017 4Dx has publicly ... Lung Imaging Workshop at the University of Pennsylvania. Founder ... to deliver the latest data to world leaders in ... brings together leaders at the forefront of the industry ... imaging. "The quality of the imaging ...
(Date:3/2/2017)... 2017 Summary This report provides all ... partnering interests and activities since 2010. ... Read the full report: ... 2010 report provides an in-depth insight into the partnering activity ... On demand company reports are prepared upon purchase to ...
(Date:2/28/2017)... , Feb. 28, 2017   Acuant , ... software globally, announces significant enhancements to new and core ... 2016. New products include mobile and desktop Acuant FRM ... TM - a real time manual review of ... idScanĀ® technology provides the fastest and most accurate capture ...
Breaking Biology News(10 mins):
(Date:3/29/2017)... Research and Markets has announced the addition of the ... 2025" report to their offering. ... The Global Agricultural Chelates Market is poised ... decade to reach approximately $825.4 million by 2025. ... the given segments on global as well as regional levels presented ...
(Date:3/29/2017)... March 29, 2017 /PRNewswire/ - The University of Missouri ... a business of Sterigenics International, and General Atomics (GA), ... submitted to the U.S. Nuclear Regulatory Commission (NRC). This ... of molybdenum-99 (Mo-99). Once operational, production from this facility ... demand for Mo-99, which currently must be imported from ...
(Date:3/29/2017)... -- Research and Markets has announced the addition ... report to their offering. ... The study scope includes key ... interference, synthetic biology tools and genome editing tools); synthetic biology-enabled ... technologies and products are analyzed to determine present and future ...
(Date:3/28/2017)... ... March 28, 2017 , ... ... the Advancement of Science (AAAS), the world's largest general scientific society and ... high-impact scholarly collection across its cross-platform reference management system. , All six ...
Breaking Biology Technology: