Navigation Links
Carnegie Mellon researchers save electricity with low-power processors and flash memory
Date:10/14/2009

PITTSBURGHResearchers at Carnegie Mellon University and Intel Labs Pittsburgh (ILP) have combined low-power, embedded processors typically used in netbooks with flash memory to create a server architecture that is fast, but far more energy efficient for data-intensive applications than the systems now used by major Internet services.

An experimental computing cluster based on this so-called Fast Array of Wimpy Nodes (FAWN) architecture was able to handle 10 to 100 times as many queries for the same amount of energy as a conventional, disk-based cluster. The FAWN cluster had 21 nodes, each with a low-cost, low-power off-the-shelf processor and a four-gigabyte compact flash card. At peak utilization, the cluster operates on less energy than a 100-watt light bulb.

The research team, led by David Andersen, Carnegie Mellon assistant professor of computer science, and Michael Kaminsky, senior research scientist at ILP, received a best paper award for its report on FAWN at the Association for Computing Machinery's annual Symposium on Operating Systems Principles Oct. 12 in Big Sky, Mont.

A next-generation FAWN cluster is being built with nodes that include Intel's Atom processor, which is used in netbooks and other mobile or low-power applications.

Developing energy-efficient server architectures has become a priority for datacenters, where the cost of electricity now equals or surpasses the cost of the computing machines themselves over their typical service life. Datacenters being built today require their own electrical substations and future datacenters may require as much as 200 megawatts of power.

"FAWN systems can't replace all of the servers in a datacenter, but they work really well for key-value storage systems, which need to access relatively small bits of information quickly," Andersen said. Key-value storage systems are growing in both size and importance, he added, as ever larger social networks and shopping Web sites keep track of customers' shopping carts, thumbnail photos of friends and a slew of message postings.

Flash memory is significantly faster than hard disks and far cheaper than dynamic random access memory (DRAM) chips, while consuming less power than either. Though low-power processors aren't the fastest available, the FAWN architecture can use them efficiently by balancing their performance with input/output bandwidth. In conventional systems, the gap between processor speed and bandwidth has continually grown for decades, resulting in memory bottlenecks that keep fast processors from operating at full capacity even as the processors continue to draw a disproportionate amount of power.

"FAWN will probably never be a good option for challenging real-time applications such as high-end gaming," Kaminsky said. "But we've shown it is a cost-effective, energy efficient approach to designing key-value storage systems and we are now working to extend the approach to applications such as large-scale data analysis."


'/>"/>

Contact: Byron Spice
bspice@cs.cmu.edu
412-268-9068
Carnegie Mellon University
Source:Eurekalert

Related biology news :

1. Technology Review names Carnegie Mellons Treuille as a top young innovator
2. Carnegie Mellon develops innovative method to detect genetic causes of complex diseases
3. Carnegie donates landmark clones to biology
4. Carnegie Mellons Jean VanBriesen leads research team on Monongahela River
5. Carnegie Mellon team makes sequestration recommendations
6. Carnegie Mellons Kris Matyjaszewski recieves EPAs Presidential Green Chemistry Challenge Award
7. Carnegie Mellon researchers apply new statistical test
8. Carnegies Donald Brown receives lifetime achievement award from Society for Developmental Biology
9. Carnegies Doug Koshland elected Fellow of the American Academy of Microbiology
10. Carnegies Joe Berry elected Fellow of the American Geophysical Union
11. Carnegies Arthur Grossman receives Gilbert Morgan Smith medal
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/26/2016)... DUBLIN , April 27, 2016 ... of the  "Global Multi-modal Biometrics Market 2016-2020"  report ... ) , The analysts forecast ... a CAGR of 15.49% during the period 2016-2020.  ... a number of sectors such as the healthcare, ...
(Date:4/14/2016)... TEL AVIV, Israel , April 14, 2016 /PRNewswire/ ... in Behavioral Authentication and Malware Detection, today announced the ... has already assumed the new role. Goldwerger,s ... for BioCatch, on the heels of the deployment of ... In addition, BioCatch,s behavioral biometric technology, which discerns unique ...
(Date:3/29/2016)... , March 29, 2016 ... "Company") LegacyXChange "LEGX" and SelectaDNA/CSI Protect are pleased to ... ink used in a variety of writing instruments, ensuring ... of originally created collectibles from athletes on LegacyXChange will ... analysis of the DNA. Bill Bollander ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ON , June 27, 2016 /PRNewswire/ - BIOREM Inc. ... has been advised by its major shareholders, Clean Technology ... United States based venture capital ... shares of Biorem (on a fully diluted, as converted ... the disposition of their entire equity holdings in Biorem ...
(Date:6/27/2016)... ... June 27, 2016 , ... Newly created 4Sight Medical ... to the healthcare market. The company's primary focus is on new product introductions, ... strategies that are necessary to help companies efficiently bring their products to market. ...
(Date:6/24/2016)... 2016  Regular discussions on a range of subjects including ... two entities said Poloz. Speaking at a lecture ... , he pointed to the country,s inflation target, which is ... "In certain areas there ... common economic goals, why not sit down and address strategy ...
(Date:6/23/2016)... ... June 23, 2016 , ... Mosio, a ... eBook, “Clinical Trials Patient Recruitment and Retention Tips.” Partnering with experienced clinical research ... by providing practical tips, tools, and strategies for clinical researchers. , “The landscape ...
Breaking Biology Technology: