Navigation Links
Carnegie Mellon researchers discover mechanism for signaling receptor recycling
Date:12/22/2010

PITTSBURGHAn international team of researchers led by Carnegie Mellon University's Manojkumar Puthenveedu has discovered the mechanism by which signaling receptors recycle, a critical piece in understanding signaling receptor function. Writing in the journal Cell, the team for the first time describes how a signaling receptor travels back to the cell membrane after it has been activated and internalized.

Signaling receptors live on the cell membrane waiting to be matched with their associated protein ligand. When they meet, the two join together like a lock and key, turning on and off critical functions within the cell. Many of these functions play a role in human health, and each new discovery about how these complex receptors work provides a potential therapeutic target for conditions including heart, lung and inflammatory disease.

After the receptor and ligand unite, they enter the cell packaged in a container called a vesicle, which delivers them to an even larger container inside the cell called an endosome. From the endosome, receptors can take one of three routes: they can travel to the lysosome and be degraded; travel to the Golgi apparatus and be processed; or the receptor can separate from its ligand and recycle back to the cell membrane via a finger-like offshoot called a tubule.

Some receptors, like nutrient receptors, are recycled back to the cell membrane very quickly through a continuous and unregulated process called bulk recycling. In the case of signaling receptors, researchers noticed that they seemed to recycle at a slower rate and in a more regulated manner. The signaling receptors took minutes to return to the cell surface, indicating that they might not be following the same bulk pathway as other classes of receptors.

"Nutrient receptors can be recycled very quickly without causing any harm, but uncontrolled recycling of a signaling receptor can have serious consequences. For instance, unrestrained signaling through the receptors for adrenaline has been linked to heart failure," Puthenveedu said. "If we can control how fast these receptors travel back to the surface and sequester them inside the cell, we would potentially have a new class of therapeutic targets."

To begin to determine how signaling receptors recycle, Puthenveedu and colleagues looked at the beta-2 adrenergic receptor (b2AR), the receptor for adrenaline and noradrenaline. The receptor is a member of the G protein-coupled receptor (GPCR) family, a group of receptors that interact with molecules responsible for cellular communication such as neurotransmitters and hormones. GPCRs are well studied because they play a pivotal role in cells' chemical communication circuits that are responsible for regulating functions critical to health, including circuits involved in heart and lung function, mood, cognition and memory, digestion, and the inflammatory response.

Puthenveedu and colleagues used live cell confocal fluorescence microscopy to label and image b2AR and the tubules by which it recycles, allowing them to visualize what was happening after the signaling receptor was internalized. They found that while the receptors were still being recycled via tubules, much like nutrient receptors, the tubules were not the same. These b2AR tubules emanated from specialized regions, or domains, on the endosome that were marked by a protein network containing actin. These unique domains, which the Carnegie Mellon researchers named Actin-Stabilized Sequence-dependent Recycling Tubule (ASSERT) domains, provided a cellular scaffold. The scaffolding trapped the receptors and slowed the release of the tubule from the endosome, therefore controlling receptor recycling. The researchers believe that they could use these domains, which are essential for signaling receptors to be sorted into the appropriate, slower recycling pathway rather than the faster bulk recycling pathway, as pharmaceutical targets for diseases that result from abnormal cell signaling.

Puthenveedu plans to continue studying receptor recycling in other types of receptors, including opioid receptors. Opiod receptors are the targets of several drugs that are often clinically abused. This research could open up a new area of study in addiction research.


'/>"/>

Contact: Jocelyn Duffy
jhduffy@andrew.cmu.edu
412-268-9982
Carnegie Mellon University
Source:Eurekalert  

Related biology news :

1. Carnegie Mellon to receive $900,000 from EPA for brownfields research
2. Carnegie Mellons Philip LeDuc participates in think tank forums
3. Carnegie Mellon developing automated systems to enable precision farming of apples, oranges
4. Carnegies Field and Koshland Elected AAAS Fellows
5. Carnegie Mellon to unveil new sequestration plan
6. Carnegies Arthur Grossman receives Gilbert Morgan Smith medal
7. Carnegies Joe Berry elected Fellow of the American Geophysical Union
8. Carnegies Doug Koshland elected Fellow of the American Academy of Microbiology
9. Carnegies Donald Brown receives lifetime achievement award from Society for Developmental Biology
10. Carnegie Mellon researchers apply new statistical test
11. Carnegie Mellons Kris Matyjaszewski recieves EPAs Presidential Green Chemistry Challenge Award
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Carnegie Mellon researchers discover mechanism for signaling receptor recycling
(Date:4/17/2017)... , April 17, 2017 NXT-ID, Inc. ... company, announces the filing of its 2016 Annual Report on Form ... Exchange Commission. ... Form 10-K is available in the Investor Relations section of the ... on the SEC,s website at http://www.sec.gov . 2016 ...
(Date:4/11/2017)... , April 11, 2017 Crossmatch®, ... secure authentication solutions, today announced that it has ... Advanced Research Projects Activity (IARPA) to develop next-generation ... program. "Innovation has been a driving ... Thor program will allow us to innovate and ...
(Date:4/11/2017)... NXT-ID, Inc. (NASDAQ:   NXTD ) ("NXT-ID" or ... independent Directors Mr. Robin D. Richards and Mr. ... the company,s corporate governance and expertise. ... Gino Pereira , Chief Executive Officer said," ... and benefiting from their considerable expertise as we move forward ...
Breaking Biology News(10 mins):
(Date:7/25/2017)... ... July 25, 2017 , ... ... of Strategic Planning. His extensive background in consulting, development and marketing make ... marketing and differentiation consulting, business strategy development, new product marketing and global ...
(Date:7/24/2017)... ... July 24, 2017 , ... ... announced that the stock market news outlet had initiated coverage on Interpace ... that screens and identifies exposure, progression and risk analysis from specific cancers ...
(Date:7/20/2017)... ... July 20, 2017 , ... VIC Technology Venture Development™ (VIC™), ... of directors. This addition continues to strengthen and diversify VIC’s board. , "We ... Chairman. “He is a highly accomplished business executive with a broad range of experience ...
(Date:7/18/2017)... ... July 18, 2017 , ... Nanomedical Diagnostics, a ... announces the launch of a new NTA biosensor chip for use with its ... the kinetics of polyhistidine-tagged (His-tagged) molecules quickly and reliably. , “Recombinant proteins ...
Breaking Biology Technology: