Navigation Links
Carnegie Mellon researchers develop artificial cells to study molecular crowding and gene expression

PITTSBURGHThe interior of a living cell is a crowded place, with proteins and other macromolecules packed tightly together. A team of scientists at Carnegie Mellon University has approximated this molecular crowding in an artificial cellular system and found that tight quarters help the process of gene expression, especially when other conditions are less than ideal.

As the researchers report in an advance online publication by the journal Nature Nanotechnology, these findings may help explain how cells have adapted to the phenomenon of molecular crowding, which has been preserved through evolution. And this understanding may guide synthetic biologists as they develop artificial cells that might someday be used for drug delivery, biofuel production and biosensors.

"These are baby steps we're taking in learning how to make artificial cells," said Cheemeng Tan, a Lane Postdoctoral Fellow and a Branco-Weiss Fellow in the Lane Center for Computational Biology, who led the study. Most studies of synthetic biological systems today employ solution-based chemistry, which does not involve molecular crowding. The findings of the CMU study and the lessons of evolution suggest that bioengineers will need to build crowding into artificial cells if synthetic genetic circuits are to function as they would in real cells.

The research team, which included Russell Schwartz, professor of biological sciences; Philip LeDuc, professor of mechanical engineering and biological sciences; Marcel Bruchez, professor of chemistry; and Saumya Saurabh, a Ph.D. student in chemistry, developed their artificial cellular system using molecular components from bacteriophage T7, a virus that infects bacteria that is often used as a model in synthetic biology.

To mimic the crowded intracellular environment, the researchers used various amounts of inert polymers to gauge the effects of different density levels.

Crowding in a cell isn't so different from a crowd of people, Tan said. If only a few people are in a room, it's easy for people to mingle, or even to become isolated. But in a crowded room where it's hard to move around, individuals will often tend to stay close to each other for extended periods. The same thing happens in a cell. If the intracellular space is crowded, binding between molecules increases.

Notably, the researchers found that the dense environments also made gene transcription less sensitive to environmental changes. When the researchers altered concentrations of magnesium, ammonium and spermidine chemicals that modulate the stability and binding of macromolecules they found higher perturbations of gene expression in low density environments than in high density environments.

"Artificial cellular systems have tremendous potential for applications in drug delivery, bioremediation and cellular computing," Tan said. "Our findings underscore how scientists could harness functioning mechanisms of natural cells to their advantage to control these synthetic cellular systems, as well as in hybrid systems that combine synthetic materials and natural cells."


Contact: Byron Spice
Carnegie Mellon University

Related biology news :

1. Keck award enables Carnegie Mellon and Stanford to dramatically expand crowdsourced RNA design
2. Carnegies Greg Asner named Energy/Climate Fellow by US State Department
3. Carnegie Mellon fluorescent biosensor reveals mechanism critical to immune system amplification
4. Carnegies Wolf B. Frommer receives Bogorad Award for Excellence in Plant Biology
5. Carnegie Mellon Universitys Biometrics Center Selected To House New Pedo-Biometrics Research and Identity Automation Lab
6. Carnegie Mellon study shows skin-aging radicals age naturally formed particles in the air
7. Carnegies Donald Brown wins Lasker-Koshland Award
8. Carnegie Institution for Science receives Grand Challenges Explorations grant
9. Carnegie debuts revolutionary biosphere mapping capability at AGU
10. Carnegies Greg Asner elected to National Academy of Sciences
11. Carnegie Mellon neuroscientists discover new phase of synaptic development
Post Your Comments:
(Date:4/26/2016)... DUBLIN , April 27, 2016 ... of the  "Global Multi-modal Biometrics Market 2016-2020"  report ... ) , The analysts forecast ... a CAGR of 15.49% during the period 2016-2020.  ... a number of sectors such as the healthcare, ...
(Date:4/15/2016)... , April 15, 2016  A new ... make more accurate underwriting decisions in a fraction ... timely, competitively priced and high-value life insurance policies ... screenings. With Force Diagnostics, rapid testing ... lifestyle data readings (blood pressure, weight, pulse, BMI, ...
(Date:4/14/2016)... 2016 BioCatch ™, the ... announced the appointment of Eyal Goldwerger as ... Goldwerger,s leadership appointment comes at a time of ... deployment of its platform at several of the world,s ... discerns unique cognitive and physiological factors, is a winner ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... June 27, 2016  Global demand for enzymes ... through 2020 to $7.2 billion.  This market includes ... cleaning products, biofuel production, animal feed, and other ... and biocatalysts). Food and beverages will remain the ... increasing consumption of products containing enzymes in developing ...
(Date:6/27/2016)... , June 27, 2016  Sequenom, Inc. (NASDAQ: ... enabling healthier lives through the development of innovative products ... the United States denied its ... the claims of Sequenom,s U.S. Patent No. 6,258,540 (",540 ... criteria established by the Supreme Court,s Mayo Collaborative Services ...
(Date:6/27/2016)... (PRWEB) , ... June 27, 2016 , ... Parallel ... clinical trials, announced today the Clinical Reach Virtual Patient Encounter CONSULT module ... circle with the physician and clinical trial team. , Using the CONSULT module, patients ...
(Date:6/27/2016)... (PRWEB) , ... June 27, 2016 , ... ... operations for Amgen, will join the faculty of the University of North ... adjunct professor of strategy and entrepreneurship at UNC Kenan-Flagler, with a focus on ...
Breaking Biology Technology: