Navigation Links
Carnegie Mellon fluorescent biosensor reveals mechanism critical to immune system amplification

PITTSBURGHUsing a new fluorescent biosensor they developed, researchers at Carnegie Mellon University have discovered how a key set of immune cells exchange information during their coordinated assault on invading pathogens. The immune cells, called dendritic cells, are harnessed by cancer vaccines and other therapeutics used to amplify the immune system. The finding, published online March 29 in the journal Angewandte Chemie, marks the first time that scientists have visualized how antigens are transferred in the immune system between dendritic cells.

"Knowing the mechanism behind what's going on in these dendritic cells how they are talking to each other in order to amplify the immune response is of fundamental significance," said Marcel P. Bruchez, associate professor of biological sciences and chemistry in the Mellon College of Science.

Dendritic cells are specialized immune cells that search for and capture foreign micro-organisms like bacteria, allergens or viruses. The cells engulf the invading organism and break it down into pieces. The dendritic cell then places these pieces, called antigens, on its cell surface.

When a dendritic cell presents antigens on its surface, it instructs other immune cells to multiply and scour the body in search of the harmful micro-organisms. Dendritic cells also can share antigens with other dendritic cells to boost immune cell activation. While scientists knew that antigens from one dendritic cell could show up in another dendritic cell, they didn't know how those antigens got there.

To determine the precise mechanism by which dendritic cells transfer antigens to each other, the research team used a new pH-biosensor developed at Carnegie Mellon's Molecular and Biosensor Imaging Center (MBIC). The biosensor is made up of two components: a fluorogen activating peptide (FAP), which is genetically expressed in a cell and tagged to a protein of interest, and a dye called a fluorogen, which either glows red or green depending on the pH level of its environment.

"All routes into the cell have characteristic pH profiles," Bruchez said. "Our pH-biosensor allows us to determine whether the tagged protein in this case a surrogate antigen is moving through neutral compartments into the cell, or through acidic compartments into the cell. Those sorts of things determine whether the antigen enters the cell through an active endocytic process, a phagocytic process, or a caveolar uptake process."

In the current study, researchers tagged a surrogate antigen on the surface of a dendritic cell with the FAP. They added the pH sensitive dye, causing the FAP antigen to glow green, an indication of a neutral pH. As the antigen and its bound dye passed to a separate dendritic cell, the antigen/FAP complex glowed red, indicating it used an acidic pathway to enter the new cell. This change in pH from neutral to acidic reveals that antigens are passed between cells through an active endocytic process.

"Once it's nibbled by the acceptor cell, the antigen goes through this endocytic pathway where it can potentially then be reprocessed and re-displayed on the surface of the receptor cell," Bruchez said.

The new biosensor's activity is novel, Bruchez said, because it binds to its target with nanomolar affinity, becomes fluorescently activated, and then is carried into the cell under endocytic conditions, reporting on the pH as it goes. The researchers are hopeful that this technology is the first in a platform of targetable environmental sensors. The current biosensor can read out pH, but this approach could be extended to measure calcium or other ion fluctuations in living cells. According to Bruchez, there are many ways that this basic chemical concept can be extended.

Contact: Jocelyn Duffy
Carnegie Mellon University

Related biology news :

1. Carnegie Mellon to receive $900,000 from EPA for brownfields research
2. Carnegie Mellons Philip LeDuc participates in think tank forums
3. Carnegie Mellon developing automated systems to enable precision farming of apples, oranges
4. Carnegies Field and Koshland Elected AAAS Fellows
5. Carnegie Mellon to unveil new sequestration plan
6. Carnegies Arthur Grossman receives Gilbert Morgan Smith medal
7. Carnegies Joe Berry elected Fellow of the American Geophysical Union
8. Carnegies Doug Koshland elected Fellow of the American Academy of Microbiology
9. Carnegies Donald Brown receives lifetime achievement award from Society for Developmental Biology
10. Carnegie Mellon researchers apply new statistical test
11. Carnegie Mellons Kris Matyjaszewski recieves EPAs Presidential Green Chemistry Challenge Award
Post Your Comments:
(Date:11/19/2015)... 19, 2015  Based on its in-depth analysis of ... BIO-key with the 2015 Global Frost & Sullivan Award ... Sullivan presents this award to the company that has ... needs of the market it serves. The award recognizes ... expands on customer base demands, the overall impact it ...
(Date:11/18/2015)... , November 18, 2015 ... published a new market report titled  Gesture Recognition Market ... Forecast, 2015 - 2021. According to the report, the global gesture ... is anticipated to reach US$29.1 bn by 2021, at ... North America dominated the global ...
(Date:11/17/2015)... 2015  Vigilant Solutions announces today that Mr. ... Directors. --> --> ... the partnership at TPG Capital, one of the largest ... Billion in revenue.  He founded and led TPG,s Operating ... companies, from 1997 to 2013.  In his first role, ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... , ... November 25, 2015 , ... ... uBiome, were featured on AngelList early in their initial angel funding process. Now, ... syndicate for individuals looking to make early stage investments in the microbiome space. ...
(Date:11/24/2015)... 24, 2015 Halozyme Therapeutics, Inc. (NASDAQ: HALO ) ... New York on Wednesday, December 2 at 9:30 ... president and CEO, will provide a corporate overview. th ... at 1:00 p.m. ET/10:00 a.m. PT . Jim ... provide a corporate overview. --> th Annual Oppenheimer ...
(Date:11/24/2015)... CITY , Nov. 24, 2015 /PRNewswire/ - Aeterna ... request of IIROC on behalf of the Toronto Stock ... news release there are no corporate developments that would ... --> --> About ... . --> Aeterna Zentaris is ...
(Date:11/24/2015)... ... November 24, 2015 , ... The Academy of Model Aeronautics ... (SIG), MultiGP, also known as Multirotor Grand Prix, to represent the First–Person View (FPV) ... Many AMA members have embraced this type of racing and several new model aviation ...
Breaking Biology Technology: