Navigation Links
Carnegie Mellon develops computer model to study cell membrane dynamics

NEW ORLEANSA cell constantly remodels its fluid membranes to carry out critical tasks, such as recognizing other cells, getting nutrients or sorting proteins. Because membranes are fluid and intrinsically disordered, investigating these and other life-sustaining processes in detail has always been difficult. But a computer model developed by Markus Deserno, associate professor of physics at Carnegie Mellon University, provides a new approach by allowing him to simulate and observe membrane dynamics at a relatively large scale -- hundreds of nanometers. It is at this scale that many critical membrane-mediated processes take place.

Deserno will describe the application of this model to the biophysical problem of vesicle creation on Tuesday, April 8 at the 235th national meeting of the American Chemical Society in New Orleans.

Our model is coarse-grained, Deserno said. You can think of it as an impressionist painting. At a distance, everything looks good. You can see water lilies or ballerinas. But up close, all the details are gone; you just see blotches of color. Were interested in whats happening with the water lilies, not the blotches of color, he added.

With this coarse-grained model, Deserno can accurately capture important large-scale characteristics, like how the membrane bends and curves, which allows him to ask questions that are beyond the atomic resolution but less than the size of an entire cell. His model is also versatile as he can add proteins of interest to the lipid membrane and observe how they interact.

Using this computer model, Deserno and colleagues at the Max Plank Institute for Polymer Research in Mainz, Germany, recently revealed a purely physical mechanism that enables vesiculation the process by which cell membranes curve around proteins or other cellular cargo to form vesicles. Without this generic ability to curve its protein-studded membranes and bud off cargo shuttles, a cell couldnt survive.

Ultimately, understanding the dynamics of vesiculation is key to advancing the design of anti-viral therapies or understanding how protein processing goes awry within a cell and leads to disease, Deserno said.

Deserno and his team created a computer simulation of a cell membrane with a lipid bilayer a soap-like film made of 50,000 individual lipids molecules and studded it with 36 evenly spaced and contact lens-shaped disks representing remodeling proteins, which are involved in vesiculation. Then he set the simulation to allow the fluid membrane to fluctuate as it normally would. During the simulation, the artificial membrane began curving in places. In creating curved membrane structures, each disk bent the membrane slightly. This local curvature spread around a disk like a little halo. When two disks approached one another, the overlapping halos led to an indirect interaction. Thus, while there was no explicit interaction between the disks, these objects indirectly attracted each other via the membrane, Desernos group found.

With this work, we provide solid support for a mechanism that has been gaining in popularity recently, Deserno said. To date, no one has demonstrated at the biophysical level exactly what most people have come to accept as evident that remodeling proteins can indeed aggregate and facilitate vesiculation based on their curvature imprint alone. Our simulations show that proteins need not interact directly to drive this critical process.

Understanding how vesiculation physically operates should make it easier in the long run to rationally design and deliver drugs to individual cells, according to Deserno. This is the biggest practical value of our research. Now that we have a proposed mechanism, we can subject it to well-posed questions, such as why certain proteins are always present during vesiculation.

In addition to investigating the process of membrane mediated interactions in computer simulations, Deserno, together with colleagues Jemal Guven at the Universidad Nacional Autnoma de Mxico and Martin Mller at the cole Normale Suprieure in Paris, has developed powerful theoretical tools to study the transport of stresses and forces through curved membranes.


Contact: Jocelyn Duffy
Carnegie Mellon University

Related biology news :

1. Carnegie Mellon scientists develop nanogels that enable controlled delivery of carbohydrate drugs
2. Carnegie Mellon scientists investigate initial molecular mechanism that triggers neuronal firing
3. Carnegie Mellon scientist uses mass spectrometer to weigh virus particle, von Willebrand factor
4. Carnegie Mellon, Pitt Team to study psychosocial stress
5. Mellon awards Carnegie Grant for Ecological Monitoring in South Africa
6. Carnegie Mellon researchers to develop new drug delivery system
7. Carnegie Mellon students win contest
8. Novel mechanism for long-term learning identified by Carnegie Mellon researchers
9. U. Mass Medical School and Carnegie announce licensing agreements with Oxford BioMedica
10. Carnegie Mellon scientists develop fluorescent proteins for live cell imaging, biosensor design
11. Carnegie Mellon receives $1.85 million
Post Your Comments:
(Date:11/17/2015)... Paris from 17 th ... Paris from 17 th until 19 th ... leader, has invented the first combined scanner in the world ... scanning surface. Until now two different scanners were required: one ... both on the same surface. This innovation is an ...
(Date:11/16/2015)... Nov 16, 2015  Synaptics Inc. (NASDAQ: ... solutions, today announced expansion of its TDDI product ... touch controller and display driver integration (TDDI) solutions ... These new TDDI products add to the previously-announced ... TD4302 (WQHD resolution), and TD4322 (FHD resolution) solutions. ...
(Date:11/11/2015)... Minn. , Nov. 11, 2015   MedNet Solutions ... entire spectrum of clinical research, is pleased to announce that ... in Clinical Trials (PCT) event, to be held November ... be able to view live demonstrations of iMedNet ... and learn how iMedNet has been able to ...
Breaking Biology News(10 mins):
(Date:12/1/2015)... ... December 01, 2015 , ... ... scientifically backed, age-defying products, is featured as the cover story and throughout ... and unrivaled opportunities that Nerium provides. Success from Home magazine routinely features ...
(Date:12/1/2015)... , Dec. 1, 2015 Cepheid (Nasdaq: ... participation at the Piper Jaffray Healthcare Conference in ... the Company is reaffirming its outlook for the fourth ... in addition to discussing longer term business model expectations. ... Executive Officer.  "We continue to be the fastest growing ...
(Date:12/1/2015)... Texas (PRWEB) , ... December 01, 2015 , ... ... annual global meeting this month and Dr. J. Kyle Mathews will ... This includes the new single site hysterectomy. , An experienced urogynecologist, founder of ...
(Date:12/1/2015)... , December 1, 2015 ... of the  "2016 U.K. Virology and Bacteriology ... for 100 Tests, Supplier Shares by Test, ... to their offering.  --> ... "2016 U.K. Virology and Bacteriology Testing Market: ...
Breaking Biology Technology: