Navigation Links
Carnegie Mellon develops computer model to study cell membrane dynamics
Date:4/8/2008

NEW ORLEANSA cell constantly remodels its fluid membranes to carry out critical tasks, such as recognizing other cells, getting nutrients or sorting proteins. Because membranes are fluid and intrinsically disordered, investigating these and other life-sustaining processes in detail has always been difficult. But a computer model developed by Markus Deserno, associate professor of physics at Carnegie Mellon University, provides a new approach by allowing him to simulate and observe membrane dynamics at a relatively large scale -- hundreds of nanometers. It is at this scale that many critical membrane-mediated processes take place.

Deserno will describe the application of this model to the biophysical problem of vesicle creation on Tuesday, April 8 at the 235th national meeting of the American Chemical Society in New Orleans.

Our model is coarse-grained, Deserno said. You can think of it as an impressionist painting. At a distance, everything looks good. You can see water lilies or ballerinas. But up close, all the details are gone; you just see blotches of color. Were interested in whats happening with the water lilies, not the blotches of color, he added.

With this coarse-grained model, Deserno can accurately capture important large-scale characteristics, like how the membrane bends and curves, which allows him to ask questions that are beyond the atomic resolution but less than the size of an entire cell. His model is also versatile as he can add proteins of interest to the lipid membrane and observe how they interact.

Using this computer model, Deserno and colleagues at the Max Plank Institute for Polymer Research in Mainz, Germany, recently revealed a purely physical mechanism that enables vesiculation the process by which cell membranes curve around proteins or other cellular cargo to form vesicles. Without this generic ability to curve its protein-studded membranes and bud off cargo shuttles, a cell couldnt survive.

Ultimately, understanding the dynamics of vesiculation is key to advancing the design of anti-viral therapies or understanding how protein processing goes awry within a cell and leads to disease, Deserno said.

Deserno and his team created a computer simulation of a cell membrane with a lipid bilayer a soap-like film made of 50,000 individual lipids molecules and studded it with 36 evenly spaced and contact lens-shaped disks representing remodeling proteins, which are involved in vesiculation. Then he set the simulation to allow the fluid membrane to fluctuate as it normally would. During the simulation, the artificial membrane began curving in places. In creating curved membrane structures, each disk bent the membrane slightly. This local curvature spread around a disk like a little halo. When two disks approached one another, the overlapping halos led to an indirect interaction. Thus, while there was no explicit interaction between the disks, these objects indirectly attracted each other via the membrane, Desernos group found.

With this work, we provide solid support for a mechanism that has been gaining in popularity recently, Deserno said. To date, no one has demonstrated at the biophysical level exactly what most people have come to accept as evident that remodeling proteins can indeed aggregate and facilitate vesiculation based on their curvature imprint alone. Our simulations show that proteins need not interact directly to drive this critical process.

Understanding how vesiculation physically operates should make it easier in the long run to rationally design and deliver drugs to individual cells, according to Deserno. This is the biggest practical value of our research. Now that we have a proposed mechanism, we can subject it to well-posed questions, such as why certain proteins are always present during vesiculation.

In addition to investigating the process of membrane mediated interactions in computer simulations, Deserno, together with colleagues Jemal Guven at the Universidad Nacional Autnoma de Mxico and Martin Mller at the cole Normale Suprieure in Paris, has developed powerful theoretical tools to study the transport of stresses and forces through curved membranes.


'/>"/>

Contact: Jocelyn Duffy
jhduffy@andrew.cmu.edu
412-268-9982
Carnegie Mellon University
Source:Eurekalert

Related biology news :

1. Carnegie Mellon scientists develop nanogels that enable controlled delivery of carbohydrate drugs
2. Carnegie Mellon scientists investigate initial molecular mechanism that triggers neuronal firing
3. Carnegie Mellon scientist uses mass spectrometer to weigh virus particle, von Willebrand factor
4. Carnegie Mellon, Pitt Team to study psychosocial stress
5. Mellon awards Carnegie Grant for Ecological Monitoring in South Africa
6. Carnegie Mellon researchers to develop new drug delivery system
7. Carnegie Mellon students win contest
8. Novel mechanism for long-term learning identified by Carnegie Mellon researchers
9. U. Mass Medical School and Carnegie announce licensing agreements with Oxford BioMedica
10. Carnegie Mellon scientists develop fluorescent proteins for live cell imaging, biosensor design
11. Carnegie Mellon receives $1.85 million
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/22/2016)... , June 22, 2016   Acuant ... and verification solutions, has partnered with RightCrowd ... solutions for Visitor Management, Self-Service Kiosks and ... products that add functional enhancements to existing ... corporations and venues with an automated ID ...
(Date:6/15/2016)... June 15, 2016 Transparency ... titled "Gesture Recognition Market by Application Market - Global Industry Analysis ... 2024". According to the report, the  global gesture recognition ... 2015 and is estimated to grow at a ... by 2024.  Increasing application of gesture ...
(Date:6/2/2016)... , June 2, 2016 The ... has awarded the 44 million US Dollar project, for ... Embossed Vehicle Plates including Personalization, Enrolment, and IT Infrastructure ... leader in the production and implementation of Identity Management Solutions. ... January, however Decatur was selected for ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... 2016 , ... Parallel 6 , the leading software as a service ... Virtual Patient Encounter CONSULT module which enables both audio and video telemedicine communication ... , Using the CONSULT module, patients and physicians can schedule a face to face ...
(Date:6/27/2016)... , ... June 27, 2016 , ... ... for Amgen, will join the faculty of the University of North Carolina ... professor of strategy and entrepreneurship at UNC Kenan-Flagler, with a focus on the ...
(Date:6/27/2016)... June 27, 2016   Ginkgo Bioworks , a ... engineering, was today awarded as one of the ... the world,s most innovative companies. Ginkgo Bioworks is ... the real world in the nutrition, health and ... directly with customers including Fortune 500 companies to ...
(Date:6/24/2016)... SAN DIEGO , June 24, 2016 /PRNewswire/ ... that more sensitively detects cancers susceptible to PARP ... individual circulating tumor cells (CTCs). The new test ... of HRD-targeted therapeutics in multiple cancer types. ... therapies targeting DNA damage response pathways, including PARP, ...
Breaking Biology Technology: