Navigation Links
Carnegie Mellon develops computer model to study cell membrane dynamics
Date:4/8/2008

NEW ORLEANSA cell constantly remodels its fluid membranes to carry out critical tasks, such as recognizing other cells, getting nutrients or sorting proteins. Because membranes are fluid and intrinsically disordered, investigating these and other life-sustaining processes in detail has always been difficult. But a computer model developed by Markus Deserno, associate professor of physics at Carnegie Mellon University, provides a new approach by allowing him to simulate and observe membrane dynamics at a relatively large scale -- hundreds of nanometers. It is at this scale that many critical membrane-mediated processes take place.

Deserno will describe the application of this model to the biophysical problem of vesicle creation on Tuesday, April 8 at the 235th national meeting of the American Chemical Society in New Orleans.

Our model is coarse-grained, Deserno said. You can think of it as an impressionist painting. At a distance, everything looks good. You can see water lilies or ballerinas. But up close, all the details are gone; you just see blotches of color. Were interested in whats happening with the water lilies, not the blotches of color, he added.

With this coarse-grained model, Deserno can accurately capture important large-scale characteristics, like how the membrane bends and curves, which allows him to ask questions that are beyond the atomic resolution but less than the size of an entire cell. His model is also versatile as he can add proteins of interest to the lipid membrane and observe how they interact.

Using this computer model, Deserno and colleagues at the Max Plank Institute for Polymer Research in Mainz, Germany, recently revealed a purely physical mechanism that enables vesiculation the process by which cell membranes curve around proteins or other cellular cargo to form vesicles. Without this generic ability to curve its protein-studded membranes and bud off cargo shuttles, a cell couldnt survive.

Ultimately, understanding the dynamics of vesiculation is key to advancing the design of anti-viral therapies or understanding how protein processing goes awry within a cell and leads to disease, Deserno said.

Deserno and his team created a computer simulation of a cell membrane with a lipid bilayer a soap-like film made of 50,000 individual lipids molecules and studded it with 36 evenly spaced and contact lens-shaped disks representing remodeling proteins, which are involved in vesiculation. Then he set the simulation to allow the fluid membrane to fluctuate as it normally would. During the simulation, the artificial membrane began curving in places. In creating curved membrane structures, each disk bent the membrane slightly. This local curvature spread around a disk like a little halo. When two disks approached one another, the overlapping halos led to an indirect interaction. Thus, while there was no explicit interaction between the disks, these objects indirectly attracted each other via the membrane, Desernos group found.

With this work, we provide solid support for a mechanism that has been gaining in popularity recently, Deserno said. To date, no one has demonstrated at the biophysical level exactly what most people have come to accept as evident that remodeling proteins can indeed aggregate and facilitate vesiculation based on their curvature imprint alone. Our simulations show that proteins need not interact directly to drive this critical process.

Understanding how vesiculation physically operates should make it easier in the long run to rationally design and deliver drugs to individual cells, according to Deserno. This is the biggest practical value of our research. Now that we have a proposed mechanism, we can subject it to well-posed questions, such as why certain proteins are always present during vesiculation.

In addition to investigating the process of membrane mediated interactions in computer simulations, Deserno, together with colleagues Jemal Guven at the Universidad Nacional Autnoma de Mxico and Martin Mller at the cole Normale Suprieure in Paris, has developed powerful theoretical tools to study the transport of stresses and forces through curved membranes.


'/>"/>

Contact: Jocelyn Duffy
jhduffy@andrew.cmu.edu
412-268-9982
Carnegie Mellon University
Source:Eurekalert

Related biology news :

1. Carnegie Mellon scientists develop nanogels that enable controlled delivery of carbohydrate drugs
2. Carnegie Mellon scientists investigate initial molecular mechanism that triggers neuronal firing
3. Carnegie Mellon scientist uses mass spectrometer to weigh virus particle, von Willebrand factor
4. Carnegie Mellon, Pitt Team to study psychosocial stress
5. Mellon awards Carnegie Grant for Ecological Monitoring in South Africa
6. Carnegie Mellon researchers to develop new drug delivery system
7. Carnegie Mellon students win contest
8. Novel mechanism for long-term learning identified by Carnegie Mellon researchers
9. U. Mass Medical School and Carnegie announce licensing agreements with Oxford BioMedica
10. Carnegie Mellon scientists develop fluorescent proteins for live cell imaging, biosensor design
11. Carnegie Mellon receives $1.85 million
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/15/2016)... , April 15, 2016  A new ... make more accurate underwriting decisions in a fraction ... timely, competitively priced and high-value life insurance policies ... screenings. With Force Diagnostics, rapid testing ... lifestyle data readings (blood pressure, weight, pulse, BMI, ...
(Date:4/13/2016)... CHICAGO , April 13, 2016  IMPOWER physicians ... are setting a new clinical standard in telehealth ... By leveraging the higi platform, IMPOWER patients can ... weight, pulse and body mass index, and, when they ... quick and convenient visit to a local retail location ...
(Date:3/29/2016)... 2016 LegacyXChange, Inc. (OTC: ... SelectaDNA/CSI Protect are pleased to announce our successful effort ... variety of writing instruments, ensuring athletes signatures against counterfeiting ... from athletes on LegacyXChange will be assured of ongoing ... Bill Bollander , CEO states, "By ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... 23, 2016  The Biodesign Challenge (BDC), a university ... to harness living systems and biotechnology, announced its winning ... New York City . ... showcased projects at MoMA,s Celeste Bartos Theater during the ... MoMA,s senior curator of architecture and design, and ...
(Date:6/23/2016)... ... June 23, 2016 , ... Supplyframe, the Industry Network for ... Design Lab . Located in Pasadena, Calif., the Design Lab’s mission is to ... are designed, built and brought to market. , The Design Lab is Supplyframe’s ...
(Date:6/23/2016)... ... June 23, 2016 , ... In a new case report published today ... a patient who developed lymphedema after being treated for breast cancer benefitted from an ... paradigm for dealing with this debilitating, frequent side effect of cancer treatment. ...
(Date:6/23/2016)... June 23, 2016  Blueprint Bio, a company dedicated ... the medical community, has closed its Series A funding ... . "We have received a commitment from ... we need to meet our current goals," stated ... the runway to complete validation on the current projects ...
Breaking Biology Technology: